Skip to main content
Log in

Ternary Diagrams for Predicting Strength of Soil Ameliorated with Different Types of Fly Ash

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In recent years, the use of geopolymer materials for ground improvement has increased with the growth in the construction sector. The lignite coal used in the thermal power plants in Turkey has low-calorie content. Thus, fly ash from these thermal power plants has high-lime content, making it unsuitable for cement production or as a cement additive material. Therefore, it is necessary to find different areas where fly ash can be utilised. In this study, the fly ashes of six power plants were tested to improve the properties of cohesive soil. The effects of fly ash along with the soil properties on improving the physicomechanical properties of the soil were examined with different mix designs. The effects of the curing period on the soil strength values were examined, and the unconfined compressive strength values of all mixtures were compared with those of the controlled specimens prepared with optimum water content. In the literature, seventeen various case studies on fly ash–soil remediation have been investigated. The data of this study and other studies were evaluated together, and multiple regression and artificial neural network analyses were performed to estimate the improved soil strength. Additionally, ternary contour diagrams were designed for assessing the fly ash–mixed soil strength using the physical and mechanical properties of the soil and fly ash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kaplan, G.; Gultekin, A.B.: The investigation of fly ash usage in terms of environmental and social effects in construction sector. In: Proceeding of the International Sustainable Buildings Symposium (ISBS), 26–28 May 2010, Ankara, Turkey (Turkish) (2010)

  2. Turhan, S.; Parmaksiz, A.; Köse, A.; Yüksel, A.; Arikan, I.H.; Yücel, B.: Radiological characteristics of pulverized fly ashes produced in Turkish coal-burning thermal power plants. Fuel 89(12), 3892–3900 (2010). https://doi.org/10.1016/j.fuel.2010.06.045

    Article  Google Scholar 

  3. Xu, H.; Van Deventer, J.S.J.: The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 59(3), 247–266 (2000). https://doi.org/10.1016/S0301-7516(99)00074-5

    Article  Google Scholar 

  4. Khale, D.; Chaudhary, R.: Mechanism of geopolymerization and factors influencing its development: a review. J. Mater. Sci. 42(3), 729–746 (2007). https://doi.org/10.1007/s10853-006-0401-4

    Article  Google Scholar 

  5. Mozumder, R.A.; Laskar, A.I.: Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using artificial neural network. Comput. Geotech. 69, 291–300 (2015). https://doi.org/10.1016/j.compgeo.2015.05.021

    Article  Google Scholar 

  6. Mackiewicz, S.M.; Ferguson, E.W.: Stabilization of soil with self-cementing coal ashes. In: Proceedings of the World of Coal Ash (WOCA’05). Lexington (2005)

  7. Binal, A.: The effects of high alkaline fly ash on strength behaviour of a cohesive soil. Adv. Mater. Sci. Eng. (2016). https://doi.org/10.1155/2016/3048716

    Article  Google Scholar 

  8. Ferguson, G.: Use of self-cementing fly ash as a soil stabilizing agent. Fly ash for soil improvement. GSPno. 36, ASCE Geotechnical Special Publication (1993)

  9. Misra, A.: Stabilization characteristics of clays using Class C fly ash. Transp. Res. Rec. 1611(1), 46–54 (1998). https://doi.org/10.3141/1611-06

    Article  Google Scholar 

  10. Puppala, A.J.; Musenda, C.: Effects of fiber reinforcement on strength and volume change in expansive soils. Transp. Res. Rec. 1736, 134–140 (2000). https://doi.org/10.3141/1736-17

    Article  Google Scholar 

  11. Prabakar, J.; Dendorkar, N.; Morchhale, R.K.: Influence of fly ash on strength behavior of typical soils. Constr. Build. Mater. 18(4), 263–267 (2004). https://doi.org/10.1016/j.conbuildmat.2003.11.003

    Article  Google Scholar 

  12. Gumuser, C.; Senol, A.: Effect of fly ash and different lengths of polypropylene fibers content on the soft soils. IJCE 12(2 and B), 134–145 (2014)

    Google Scholar 

  13. Bin-Shafique, S.; Rahman, K.; Yaykiran, M.; Azfar, I.: The long-term performance of two fly ash stabilized fine-grained soil subbases. Resour. Conserv. Recycl. 54(10), 666–672 (2010). https://doi.org/10.1016/j.resconrec.2009.11.007

    Article  Google Scholar 

  14. Nicholson, P.G.; Kashyap, V.: Fly ash stabilization of tropical Hawaiian soils in fly ash for soil improvement. ASCE Geotech. Spec. Publ. 36, 1134–1147 (1993)

    Google Scholar 

  15. Kolias, S.; Kasselouri-Rigopoulou, V.; Karahalios, A.: Stabilisation of clayey soils with high calcium fly ash and cement. Cem. Concr. Compos. 27(2), 301–313 (2005). https://doi.org/10.1016/j.cemconcomp.2004.02.019

    Article  Google Scholar 

  16. Du, Y.; Li, S.; Hayashi, S.: Swelling-shrinkage properties and soil improvement of compacted expansive soil, Ning-Liang Highway, China. Eng. Geol. 53(3–4), 351–358 (1999). https://doi.org/10.1016/S0013-7952(98)00086-6

    Article  Google Scholar 

  17. Langroudi, A.A.; Yasrobi, S.S.: A micro-mechanical approach to swelling behavior of unsaturated expansive clays under controlled drainage conditions. Appl. Clay Sci. 45(1–2), 8–19 (2009). https://doi.org/10.1016/j.clay.2008.09.004

    Article  Google Scholar 

  18. Lin, D.-F.; Lin, K.-L.; Hung, M.-J.; Luo, H.-L.: Sludge ash/hydrated lime on the geotechnical properties of soft soil. J. Hazard. Mater. 145(1–2), 58–64 (2007). https://doi.org/10.1016/j.jhazmat.2006.10.087

    Article  Google Scholar 

  19. Nalbantoglu, Z.: Effectiveness of class C fly ash as an expansive soil stabilizer. Constr. Build. Mater. 18(6), 377–381 (2004). https://doi.org/10.1016/j.conbuildmat.2004.03.011

    Article  Google Scholar 

  20. Yong, R.N.; Ouhadi, V.R.: Experimental study on instability of bases on natural and lime/cement-stabilized clayey soils. Appl. Clay Sci. 35(3–4), 238–249 (2007). https://doi.org/10.1016/j.clay.2006.08.009

    Article  Google Scholar 

  21. Kang, X.; Ge, L.; Kang, G.-C.; Mathews, C.: Laboratory investigation of the strength, stiffness, and thermal conductivity of fly ash and lime kiln dust stabilised clay subgrade materials. Road Mater. Pavement Des. 16(4), 928–945 (2015). https://doi.org/10.1080/14680629.2015.1028970

    Article  Google Scholar 

  22. Sukmak, P.; Horpibulsuk, S.; Shen, S.-L.; Chindaprasirt, P.; Suksiripattanapong, C.: Factors influencing strength development in clay–fly ash geopolymer. Constr. Build. Mater. 47, 1125–1136 (2013). https://doi.org/10.1016/j.conbuildmat.2013.05.104

    Article  Google Scholar 

  23. Wang, Y.; Zhang, M.H.; Li, W.; Chia, K.S.; Liew, J.Y.R.: Stability of cenospheres in lightweight cement composites in terms of alkali-silica reaction. Cem. Concr. Res. 42, 721–727 (2012). https://doi.org/10.1016/j.cemconres.2012.02.010

    Article  Google Scholar 

  24. Hanif, A.; Lu, Z.; Diao, S.; Zeng, X.; Li, Z.: Properties investigation of fiber reinforced cement-based composites incorporating cenosphere fillers. Constr. Build. Mater. 140, 139–149 (2017). https://doi.org/10.1016/j.conbuildmat.2017.02.093

    Article  Google Scholar 

  25. Toktas, F.: Behavior and stabilization of dispersive soils with C type fly ash. Dissertation, Middle East Technical University, Ankara, Turkey (2001)

  26. ASTM C618: Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. American Society for Testing and Materials, West Conshohocken, PA, USA (2010)

  27. TUBITAK: Production of Synthetic Zeolites in Laboratory and Pilot Scales from Fly Ashes in Turkish Coal-Fired Power Plants. Project Manager:Ali İhsan Karayigit, Project No: 105M274, Ankara, Turkey (in Turkish) (2009)

  28. ASTM D7762: Standard Practice for Design of Stabilization of Soil and Soil-Like Materials with Self-Cementing Fly Ash. American Society for Testing and Materials, West Conshohocken, PA, USA (2011)

  29. ASTM D698: Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). American Society for Testing and Materials, West Conshohocken, PA, USA (2010)

  30. Ismaiel, H.A.H.: Treatment and improvement of the geotechnical properties of different soft fine grained soils using chemical stabilization. Dissertation, Martin Luther Universität, Halle-Wittenberg, Germany (2006)

  31. Sezer, A.; Inan, G.; Yılmaz, H.R.; Ramyar, K.: Utilization of a relatively higher lime fly ash for improvement of Izmir clay. Build. Environ. 41(2), 150–155 (2006). https://doi.org/10.1016/j.buildenv.2004.12.009

    Article  Google Scholar 

  32. Reyes, A.; Pando, M.: Evaluation of CFBC fly ash for improvement of soft clays. In: Proceedings of the World of Coal Ash (WOCA), Covington, Kentucky, USA (2007). https://doi.org/10.1007/s00521-017-3305-0

  33. Aksoy H.S.; Yılmaz M.; A.E.E.: Stabilization of a clayey soil with Tunçbilek fly ash. Fırat Univ. Dogu Anadolu Bolgesi Arastirmalari Derg. 6, 88–92 (2008)

  34. Brooks, R.; Udoeyo, F.F.; Takkalapelli, K.V.: Geotechnical properties of problem soils stabilized with fly ash and limestone dust in Philadelphia. J. Mater. Civ. Eng. ASCE 23(5), 711–716 (2011). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000214

    Article  Google Scholar 

  35. Sai, D.T.R.; Shankar,; Naik, M.: Influence of fly ash on the strength behaviour of lime and cement treated red soil. Int. J. Environ. Res. Dev. 4(2), 135–140 (2014)

    Google Scholar 

  36. Firat, S.; Khatib, J.M.; Yilmaz, G.; Comert, A.: Effect of curing time on selected properties of soil stabilized with fly ash, marble dust and waste sand for road sub-base materials. Waste Manag. Res. 35(7), 747–756 (2017). https://doi.org/10.1177/0734242X17705726

    Article  Google Scholar 

  37. ASTM D4318: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils., West Conshohocken, PA, USA (2010)

  38. ASTM D2166/D2166M: Standard test method for unconfined compressive strength of cohesive soil. American Society for Testing and Materials, West Conshohocken, PA, USA (2010)

  39. Soni, N.: Influence of fly ash on the strength and swelling characteristics of bentonite. Dissertation, National Institute of Technology Rourkela, India (2010)

  40. Saravanan, R.; Thomas, R.S.; Joseph, M.: A study on soil stabilization of clay soil using fly ash. Int. J. Res. Civ. Eng. Archit. Des. 1(2), 33–37 (2013)

    Google Scholar 

  41. Bose, B.: Geo-engineering properties of expansive soil stabilized with fly ash. Electron. J. Geotech. Eng. 17, 1339–1353 (2012)

    Google Scholar 

  42. Bhuvaneshwari, S.; Robinson, R.G.; Gandhi, S.R.: Stabilization of expansive soils using fly ash. Fly Ash India 8, 5.1–5.10 (2005)

    Google Scholar 

  43. Ozdemir, M.A.: Improvement in bearing capacity of a soft soil by addition of fly ash. Procedia Eng 143, 498–505 (2016)

    Article  Google Scholar 

  44. Sharma, N.K.; Swain, S.K.; Sahoo, U.C.: Stabilization of a clayey soil with fly ash and lime: a micro level investigation. Geotech. Geol. Eng. 30, 1197–1205 (2012). https://doi.org/10.1007/s10706-012-9532-3

    Article  Google Scholar 

  45. Sivapullaiah, P.V.; Jha, A.K.: Gypsum induced strength behaviour of fly ash-lime stabilized expansive soil. Geotech. Geol. Eng. 32(5), 1261–1273 (2014). https://doi.org/10.1007/s10706-014-9799-7

    Article  Google Scholar 

  46. Zha, F.; Liu, S.; Du, Y.; Cui, K.: Behavior of expansive soils stabilized with fly ash. Nat. Hazard 47(3), 509–523 (2008). https://doi.org/10.1007/s11069-008-9236-4

    Article  Google Scholar 

  47. Kang, X.; Zhao, X.; Bate, B.: Sedimentation behavior of fly ash-kaolinite mixtures.In: International Conference on Case Histories in Geotechnical Engineering. Chicago, USA (2013)

  48. Kang, X.; Xia, Z.; Chen, R.; Sun, H.; Yang, W.: Effects of inorganic ions, organic polymers, and fly ashes on the sedimentation characteristics of kaolinite suspensions. Appl. Clay Sci. 181, 105220 (2019). https://doi.org/10.1016/j.clay.2019.105220

    Article  Google Scholar 

  49. Montgomery, D.C.; Runger, G.C.: Applied statistics and probability for engineers. Wiley, New York (1999)

    MATH  Google Scholar 

  50. Freedman, D.A.: Statistical Models: Theory and Practice, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  51. Hecht-Nielsen, R.: Neurocomputing. Addison-Wesley, Missouri (1990)

    Google Scholar 

  52. Baughman, D.R.; Liu, Y.: Neural networks in bio-processing and chemical engineering. Academic Press, New York (1995)

    Google Scholar 

  53. Oztas, A.; Pala, M.; Ozbay, E.; Kanca, E.; Cağlar, N.; Bhatti, M.A.: Predicting the compressive strength and slump of high strength concrete using neural network. Constr. Build. Mater. 20(9), 769–775 (2006). https://doi.org/10.1016/j.conbuildmat.2005.01.054

    Article  Google Scholar 

  54. Marti, R.; El-Fallahi, A.: Multilayer neural networks: an experimental evaluation of on-line training methods. Comput. Oper. Res. 31(9), 1491–1513 (2004). https://doi.org/10.1016/S0305-0548(03)00104-7

    Article  MATH  Google Scholar 

  55. Kewalramani, M.A.; Gupta, R.: Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks. Automat. Constr. 15(3), 374–379 (2006). https://doi.org/10.1016/j.autcon.2005.07.003

    Article  Google Scholar 

  56. Yang, Y.; Rosenbaum, M.S.: The artificial neural network as a tool for assessing geotechnical properties. Geotech. Geol. Eng. 20(2), 149–168 (2002). https://doi.org/10.1023/A:1015066903985

    Article  Google Scholar 

  57. Pala, M.; Ozbay, E.; Oztas, A.; Yuce, M.I.: Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks. Constr. Build. Mater. 21(2), 384–394 (2007). https://doi.org/10.1016/j.conbuildmat.2005.08.009

    Article  Google Scholar 

  58. Neaupane, K.M.; Achet, S.H.: Use of backpropagation neural network for landslide monitoring: a case study in the higher Himalaya. Eng. Geol. 74(3–4), 213–226 (2004). https://doi.org/10.1016/j.enggeo.2004.03.010

    Article  Google Scholar 

  59. Zurada, M.J.: Introduction to artificial neural systems. PWS, Boston (1992)

    Google Scholar 

  60. Rafiq, M.Y.; Bugmann, G.; Easterbrook, D.J.: Neural network design for engineering applications. Comput. Struct. 79(17), 1541–1552 (2001). https://doi.org/10.1016/S0045-7949(01)00039-6

    Article  Google Scholar 

  61. Binal, A.: Prediction of mechanical properties of non-welded and moderately welded ignimbrite using physical properties, ultrasonic pulse velocity, and point load index tests. Q. J. Eng. Geol. Hydrogeol. 42(1), 107–122 (2009). https://doi.org/10.1144/1470-9236/08-040

    Article  Google Scholar 

  62. The Mathworks Inc.: MATLAB—MathWorks, USA (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil Binal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binal, A., Binal, B.E. Ternary Diagrams for Predicting Strength of Soil Ameliorated with Different Types of Fly Ash. Arab J Sci Eng 45, 8199–8217 (2020). https://doi.org/10.1007/s13369-020-04669-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04669-2

Keywords

Navigation