Skip to main content
Log in

Unconfined Compressive Strength Testing of Bio-cemented Weak Soils: A Comparative Upscale Laboratory Testing

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Bio-cementation of soils has gained a lot of attention on a global level owing of its ability to improve strength characteristics of weak or marginal soils. In this study, two urease producing bacteria namely Bacillus subtilis (B.S) and Bacillus pasteurii (B.P) along with a cementation media have been used to enhance the unconfined compressive strength (UCS) of dredged soils. Maintaining an optimum temperature of 18–23 °C, treatment was provided using cementation media molarity (CMM) of 0.5 and 1.0 in full contact moulds (FCM) having a diameter of 38, 76 and 114 mm respectively for 8 cycles (6 h each). The extruded samples were further tested for UCS with the test results indicating that as the sample size increased, the UCS value increased irrespective of the bacteria used. Maximum values of UCS for both the bacteria’s were observed at 0.5 CMM. An increase in UCS from 280 kN/m2 in the untreated state to 735 and 820 kN/m2 for B.S and B.P respectively was noticed. The enhancement in UCS is attributed to the formation of calcite crystals which was further supported by elemental and mineral analysis. The main goal of this study was to improve weak soils and to explore the potential of a green ground improvement technique in field applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Prabakar, J.; Dendorkar, N.; Morchhale, R.K.: Influence of fly ash on strength behavior of typical soils. Constr. Build. Mater. 18(4), 263–267 (2004)

    Article  Google Scholar 

  2. Rajasekaran, G.; Rao, S.N.: Compressibility behaviour of lime-treated marine clay. Ocean Eng. 29(5), 545–559 (2002). https://doi.org/10.1016/S0029-8018(01)00010-5

    Article  Google Scholar 

  3. Davari Algoo, S.; Akhlaghi, T.; Ranjbarnia, M.: Engineering properties of clayey soil stabilised with alkali-activated slag. Proc. Inst. Civ. Eng. Ground Improv. (2019). https://doi.org/10.1680/jgrim.18.00053

    Article  Google Scholar 

  4. Fattah, M.Y.; Al-Saidi, A.A.; Jaber, M.M.: Improvement of bearing capacity of footing on soft clay grouted with lime-silica fume mix. Geomech. Eng. 8(1), 113–132 (2015)

    Article  Google Scholar 

  5. Leshchinsky, D.; Han, J.: Geosynthetic reinforced multitiered walls. J. Geotech. Geoenviron. Eng. 130(12), 1225–1235 (2004)

    Article  Google Scholar 

  6. Sherwood, P.: Soil stabilization with cement and lime. Transport Research Laboratory  (1993)

  7. Brooks, R.M.: Soil stabilization with fly ash and rice husk ash. Int. J. Res. Rev. Appl. Sci. 1(3), 209–217 (2009)

    Google Scholar 

  8. Campbell, S.: Soil stabilization by a prokaryotic desert crust: implications for Precambrian land biota. In: Ponnamperuma, C., Margulis, L. (eds.) Limits of Life, pp. 85–98. Springer, Dordrecht (1980). https://doi.org/10.1007/978-94-009-9085-2_8

    Chapter  Google Scholar 

  9. Petry, T.M.; Armstrong, J.C.: Stabilization of expansive clay soils. Transp. Res. Rec. 1219, 103–112 (1989)

    Google Scholar 

  10. Puppala, A.; Hoyos, L.; Viyanant, C.; Musenda, C.: Fiber and fly ash stabilization methods to treat soft expansive soils. In: Soft Ground Technology Conference, Noordwijkerhout, the Netherlands, 28 May–2 June 2000, pp. 136–145 (2000). https://doi.org/10.1061/40552(301)11

  11. Güllü, H.; Canakci, H.; Al Zangana, I.F.: Use of cement based grout with glass powder for deep mixing. Constr. Build. Mater. 137, 12–20 (2017)

    Article  Google Scholar 

  12. Rollins, K.M.; Herbst, M.; Adsero, M.; Brown, D.: Jet grouting and soil mixing for increased lateral pile group resistance. In: GeoFlorida 2010: Advances in Analysis, Modeling and Design, pp. 1563–1572 (2010). https://doi.org/10.1061/41095(365)158

  13. Dehghanbanadaki, A.; Ahmad, K.; Ali, N.; Khari, M.; Alimohammadi, P.; Latifi, N.: Stabilization of soft soils with deep mixed soil columns—general perspective. Electron. J. Geotech. Eng. 18, 295–306 (2013)

    Google Scholar 

  14. Holm, G.: Deep mixing. In: Soft Ground Technology Conference, 28 May–2 June 2000, Noordwijkerhout, the Netherlands, pp. 105–122 (2000). https://doi.org/10.1061/40552(301)9

  15. Karim, H.H.; Samueel, Z.W.; Mohammed, M.S.: Sand column stabilized by silica fume embedded in soft soil. Eng. Technol. J. 34(6 Part (A) Engineering), 1047–1057 (2016)

    Google Scholar 

  16. Richards, T.D. Jr.; Rothbauer, M.J.: Lateral loads on pin piles (micropiles). In: GeoSupport Conference 2004, 29–31 December 2004, Orlando, Florida, United States: Drilled Shafts, Micropiling, Deep Mixing, Remedial Methods, and Specialty Foundation Systems, pp. 158–174 (2004). https://doi.org/10.1061/40713(2004)7

  17. Sadek, M.; Shahrour, I.: Influence of the head and tip connection on the seismic performance of micropiles. Soil Dyn. Earthq. Eng. 26(5), 461–468 (2006)

    Article  Google Scholar 

  18. Han, J.; Ye, S.L.: A field study on the behavior of a foundation underpinned by micropiles. Can. Geotech. J. 43(1), 30–42 (2006)

    Article  Google Scholar 

  19. DeJong, J.T.; Fritzges, M.B.; Nüsslein, K.: Microbially induced cementation to control sand response to undrained shear. J. Geotech. Geoenviron. Eng. 132(11), 1381–1392 (2006)

    Article  Google Scholar 

  20. Mitchell, J.K.; Santamarina, J.C.: Biological considerations in geotechnical engineering. J. Geotech. Geoenviron. Eng. 131(10), 1222–1233 (2005)

    Article  Google Scholar 

  21. Mitchell, J.K.: In-place treatment of foundation soils. J. Soil Mech. Found. Div. 96(1), 73–110 (1970)

    Google Scholar 

  22. Canakci, H.; Sidik, W.; Kilic, I.H.: Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils Found. 55(5), 1211–1221 (2015)

    Article  Google Scholar 

  23. Chou, C.W.; Seagren, E.A.; Aydilek, A.H.; Lai, M.: Biocalcification of sand through ureolysis. J. Geotech. Geoenviron. Eng. 137(12), 1179–1189 (2011)

    Article  Google Scholar 

  24. Kim, D.H.; Kim, H.C.; Park, K.H.: Cementation of soft ground using bacteria. Korea Patent, 10-1030761 (2011)

  25. Montoya, B.M.; DeJong, J.T.; Boulanger, R.W.: Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Géotechnique 63(4), 302–312 (2013)

    Article  Google Scholar 

  26. Van Paassen, L.A.; Ghose, R.; van der Linden, T.J.; van der Star, W.R.; van Loosdrecht, M.C.: Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. J. Geotech. Geoenviron. Eng. 136(12), 1721–1728 (2010)

    Article  Google Scholar 

  27. Whiffin, V.S.; Van Paassen, L.A.; Harkes, M.P.: Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol J. 24(5), 417–423 (2007)

    Article  Google Scholar 

  28. Burbank, M.; Weaver, T.; Lewis, R.; Williams, T.; Williams, B.; Crawford, R.: Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria. J. Geotech. Geoenviron. Eng. 139(6), 928–936 (2013)

    Article  Google Scholar 

  29. Martinez, B.C.; DeJong, J.T.; Ginn, T.R.; Montoya, B.M.; Barkouki, T.H.; Hunt, C.; Major, D.: Experimental optimization of microbial-induced carbonate precipitation for soil improvement. J. Geotech. Geoenviron. Eng. 139(4), 587–598 (2013)

    Article  Google Scholar 

  30. Zhao, Q.; Li, L.; Li, C.; Li, M.; Amini, F.; Zhang, H.: Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease. J. Mater. Civ. Eng. 26(12), 04014094 (2014)

    Article  Google Scholar 

  31. Zhao, Q.; Li, L.; Li, C.; Zhang, H.; Amini, F.: A full contact flexible mold for preparing samples based on microbial-induced calcite precipitation technology. Geotech. Test. J. 37(5), 917–921 (2014)

    Article  Google Scholar 

  32. Han, Z.; Cheng, X.; Ma, Q.: An experimental study on dynamic response for MICP strengthening liquefiable sands. Earthq. Eng. Eng. Vib. 15(4), 673–679 (2016)

    Article  Google Scholar 

  33. Li, M.; Fu, Q.L.; Zhang, Q.; Achal, V.; Kawasaki, S.: Bio-grout based on microbially induced sand solidification by means of asparaginase activity. Sci. Rep. 5, 16128 (2015)

    Article  Google Scholar 

  34. DeJong, J.T.; Mortensen, B.M.; Martinez, B.C.; Nelson, D.C.: Bio-mediated soil improvement. Ecol. Eng. 36(2), 197–210 (2010)

    Article  Google Scholar 

  35. Cheshomi, A.; Mansouri, S.; Amoozegar, M.A.: Improving the shear strength of quartz sand using the microbial method. Geomicrobiol J. 35(9), 749–756 (2018)

    Article  Google Scholar 

  36. Smith, A.J.; Pritchard, M.;Edmondson, A.; Bashir, S.: The reduction of the permeability of a lateritic soil through the application of microbially induced calcite precipitation. Nat. Resour. (2017). https://doi.org/10.4236/nr.2017.85021

    Article  Google Scholar 

  37. Fujita, Y.; Taylor, J.L.; Wendt, L.M.; Reed, D.W.; Smith, R.W.: Evaluating the potential of native ureolytic microbes to remediate a 90Sr contaminated environment. Environ. Sci. Technol. 44(19), 7652–7658 (2010)

    Article  Google Scholar 

  38. Mwandira, W.; Nakashima, K.; Kawasaki, S.: Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand. Ecol. Eng. 109, 57–64 (2017)

    Article  Google Scholar 

  39. Liu, L.; Liu, H.; Stuedlein, A.W.; Evans, T.M.; Xiao, Y.: Strength, stiffness, and microstructure characteristics of biocemented calcareous sand. Can. Geotech. J. 56(10), 1502–1513 (2019)

    Article  Google Scholar 

  40. Xiao, P.; Liu, H.; Xiao, Y.; Stuedlein, A.W.; Evans, T.M.: Liquefaction resistance of bio-cemented calcareous sand. Soil Dyn. Earthq. Eng. 107, 9–19 (2018)

    Article  Google Scholar 

  41. Liang, J.; Guo, Z.; Deng, L.; Liu, Y.: Mature fine tailings consolidation through microbial induced calcium carbonate precipitation. Can. J. Civ. Eng. 42(11), 975–978 (2015)

    Article  Google Scholar 

  42. Salifu, E.; MacLachlan, E.; Iyer, K.R.; Knapp, C.W.; Tarantino, A.: Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: a preliminary investigation. Eng. Geol. 201, 96–105 (2016)

    Article  Google Scholar 

  43. Jiang, N.J.; Tang, C.S.; Yin, L.Y.; Xie, Y.H.; Shi, B.: Applicability of microbial calcification method for sandy-slope surface erosion control. J. Mater. Civ. Eng. 31(11), 04019250 (2019)

    Article  Google Scholar 

  44. Van Paassen, L.A.: Microbes turning sand into sandstone, using waste as cement. In: 4th International Young Geotechnical Engineers Conference, pp. 135–138 (2009)

  45. Mortensen, B.M.; Haber, M.J.; DeJong, J.T.; Caslake, L.F.; Nelson, D.C.: Effects of environmental factors on microbial induced calcium carbonate precipitation. J. Appl. Microbiol. 111(2), 338–349 (2011)

    Article  Google Scholar 

  46. Wani, K.S.; Mir, B.A.: Influence of microbial geo-technology in the stabilization of dredged soils. Int. J. Geotech. Eng. (2019). https://doi.org/10.1080/19386362.2019.1643099

    Article  Google Scholar 

  47. Wani, K.S.; Mir, B.A.: Effect of biological cementation on the mechanical behaviour of dredged soils with emphasis on micro-structural analysis. Int. J. Geosynth. Ground Eng. 5(4), 32 (2019)

    Article  Google Scholar 

  48. Xiao, Y.; Wang, Y.; Desai, C.S.; Jiang, X.; Liu, H.: Strength and deformation responses of biocemented sands using a temperature-controlled method. Int. J. Geomech. 19(11), 04019120 (2019)

    Article  Google Scholar 

  49. Xiao, P.; Liu, H.; Stuedlein, A.W.; Evans, T.M.; Xiao, Y.: Effect of relative density and biocementation on cyclic response of calcareous sand. Can. Geotech. J. 56(12), 1849–1862 (2019)

    Article  Google Scholar 

  50. Bergado, D.T.; Anderson, L.R.; Miura, N.; Balasubramaniam, A.S.: Soft ground improvement in lowland and other environments. ASCE, New York (1996)

  51. Liu, L.; Liu, H.; Xiao, Y.; Chu, J.; Xiao, P.; Wang, Y.: Biocementation of calcareous sand using soluble calcium derived from calcareous sand. Bull. Eng. Geol. Env. 77(4), 1781–1791 (2018)

    Article  Google Scholar 

  52. McNamara, K.: Stromatolites. Western Australian Museum (2009)

  53. Wacey, D.; Urosevic, L.; Saunders, M.; George, A.D.: Mineralisation of filamentous cyanobacteria in Lake Thetis stromatolites. West. Aust. Geobiol. 16(2), 203–215 (2018)

    Article  Google Scholar 

  54. Webster, T.: VII. On the fresh-water formations in the isle of wight, with some observations on the strata over the Chalk in the South-east part of England. Trans. Geol. Soc. Lond. 1(1), 161–254 (1814)

    Article  Google Scholar 

  55. Ng, W.S.; Lee, M.L.; Hii, S.L.: An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement. World Acad. Sci. Eng. Technol. 62(2), 723–729 (2012)

    Google Scholar 

  56. Stocks-Fischer, S.; Galinat, J.K.; Bang, S.S.: Microbiological precipitation of CaCO3. Soil Biol. Biochem. 31(11), 1563–1571 (1999)

    Article  Google Scholar 

  57. Arunachalam, K.D.; Sathyanarayanan, K.S.; Darshan, B.S.; Raja, R.B.: Studies on the characterisation of Biosealant properties of Bacillus sphaericus. Int. J. Eng. Sci. Technol. 2(3), 270–277 (2010)

    Google Scholar 

  58. Li, M.; Li, L.; Ogbonnaya, U.; Wen, K.; Tian, A.; Amini, F.: Influence of fiber addition on mechanical properties of MICP-treated sand. J. Mater. Civ. Eng. 28(4), 04015166 (2016)

    Article  Google Scholar 

  59. Ramachandran, S.K.; Ramakrishnan, V.; Bang, S.S.: Remediation of concrete using micro-organisms. ACI Mater. J. Am. Concr. Inst. 98(1), 3–9 (2001)

    Google Scholar 

  60. Cheng, L.; Shahin, M.A.; Cord-Ruwisch, R.; Addis, M.; Hartanto, T.; Elms, C.: Soil stabilisation by microbial-induced calcite precipitation (micp): investigation into some physical and environmental aspects. In: 7th International Congress on Environmental Geotechnics: iceg2014, p. 1105. Engineers Australia (2014)

  61. ASTM D6913/D6913M-17: Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM International, West Conshohocken (2017). https://doi.org/10.1520/D6913_D6913M-17

    Book  Google Scholar 

  62. ASTM D2216-10: Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International, West Conshohocken (2010). https://doi.org/10.1520/D2216-10

    Book  Google Scholar 

  63. ASTM D4318-17e1: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, West Conshohocken (2017). https://doi.org/10.1520/D4318-17E01

    Book  Google Scholar 

  64. ASTM D854-14: Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International, West Conshohocken (2014). https://doi.org/10.1520/D0854-14

    Book  Google Scholar 

  65. ASTM D698-12e2: Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, West Conshohocken (2012). https://doi.org/10.1520/D0698-12E02

    Book  Google Scholar 

  66. ASTM D6528-17: Standard Test Method for Consolidated Undrained Direct Simple Shear Testing of Fine Grain Soils. ASTM International, West Conshohocken (2017). https://doi.org/10.1520/D6528-17

    Book  Google Scholar 

  67. ASTM D2166, D2166M-16: Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International, West Conshohocken (2016). https://doi.org/10.1520/D2166_D2166M-16

    Book  Google Scholar 

  68. ASTM D1883-16: Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils. ASTM International, West Conshohocken (2016)

    Google Scholar 

  69. Shahrokhi-Shahraki, R.; Zomorodian, S.M.A.; Niazi, A.; O’Kelly, B.C.: Improving sand with microbial-induced carbonate precipitation. Proc. Inst. Civ. Eng. Ground Improv. 168(3), 217–230 (2015)

    Article  Google Scholar 

  70. Umar, M.; Kassim, K.A.; Chiet, K.T.P.: Biological process of soil improvement in civil engineering: a review. J. Rock Mech. Geotech. Eng. 8(5), 767–774 (2016)

    Article  Google Scholar 

  71. Baskar, S.; Baskar, R.; Mauclaire, L.; McKenzie, J.A.: Microbially induced calcite precipitation in culture experiments: possible origin for stalactites in Sahastradhara caves, Dehradun, India. Curr. Sci. 90(1), 58–64 (2006). https://www.jstor.org/stable/24089018

  72. Ta, H.X.: Microbial biofilm in porous sediments: Effects on soil behaviour. Doctoral dissertation, Washington State University (2016). http://hdl.handle.net/2376/12115

  73. Chen, K.B.; Bin Kassim, K.A.: Microbial induced cementation on tropical residual soil (2015). https://engineering.utm.my/civil/wp-content/uploads/sites/29/2016/12/Microbial-Induced-Cementation-on-Tropical-Residual-Soil.pdf

  74. Kang, C.H.; Kwon, Y.J.; So, J.S.: Soil bioconsolidation through microbially induced calcite precipitation by Lysinibacillus sphaericus WJ-8. Geomicrobiol J. 33(6), 473–478 (2016)

    Article  Google Scholar 

  75. Li, M.; Fang, C.; Kawasaki, S.; Achal, V.: Fly ash incorporated with biocement to improve strength of expansive soil. Sci. Rep. 8(1), 1–7 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The present work has been benefited from the Ph.D. research work of the first author. The experimental work was conducted in the Geo-Tech Engineering Laboratory-I and II of National Institute of Technology, Srinagar, India. The authors would like to present their gratitude to the anonymous reviewers for carefully reviewing the manuscript and providing valuable suggestions.

Funding

No direct funding was received for this research. The first author receives a doctoral fellowship from Govt. of India, Ministry of Human Resource Development (MHRD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. N. Saquib Wani.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest in this research work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wani, K.M.N.S., Mir, B.A. Unconfined Compressive Strength Testing of Bio-cemented Weak Soils: A Comparative Upscale Laboratory Testing. Arab J Sci Eng 45, 8145–8157 (2020). https://doi.org/10.1007/s13369-020-04647-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04647-8

Keywords

Navigation