Skip to main content
Log in

Fluid Dynamics of Flow Around Side-by-Side Arranged Cylinders

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Flow past four side-by-side identical square cylinders arranged normal to the flow have been found to show interesting and important flow features which are very difficult to get through experiments. Lattice Boltzmann method (LBM) is used for numerical simulations of two-dimensional (2D) flow around four side-by-side arranged cylinders. In this study, the Reynolds number (Re) is chosen to be 60, 80, 100, 120 and 140 and the spacing ratio g* (= g/D, where D is the size of cylinder and g is the distance between the cylinders) is set at 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5 and 4. Based on the flow characteristics, seven distinct and unique flow regimes are identified for different ranges of Re and g*. Physical features of each flow regime such as wake structures, vortex dynamics, gap flow behavior, time histories of lift coefficients, shedding frequencies and hydrodynamic forces are thoroughly discussed. The Reynolds numbers strongly affect the flow, especially at 0 ≤ g* ≤ 2, in terms of vortex-shedding frequency. A significant secondary frequency is also found other than the primary frequency in the base-bleed and flip-flopping flow regimes. It is observed that for g* ≥ 2.5 primary shedding frequency strongly affects the flow dynamics and the mutual interaction of the wakes behind the cylinders decreases with an increase in the Reynolds number. The Strouhal value is same for the outer and inner cylinders in inphase–antiphase weak interaction flow regime and different for base-bleed and flip-flopping flow regimes. In inphase asynchronous weak interaction flow regime, the Strouhal number is same for all four cylinders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

C 1 :

First cylinder from bottom to top

C 2 :

Second cylinder from bottom to top

C 3 :

Third cylinder from bottom to top

C 4 :

Fourth cylinder from bottom to top

c :

Speed of sound

C D :

Drag coefficient

C L :

Lift coefficient

C Dmean :

Mean drag coefficient

C D1mean :

Mean drag coefficient of first cylinder

C D2mean :

Mean drag coefficient of second cylinder

C D3mean :

Mean drag coefficient of third cylinder

C D4mean :

Mean drag coefficient of fourth cylinder

C Drms :

Root mean square of drag coefficient

C D1rms :

First cylinder rms of drag coefficient

C D2rms :

Second cylinder rms of drag coefficient

C D3rms :

Third cylinder rms of drag coefficient

C D4rms :

Fourth cylinder rms of drag coefficient

C Lrms :

Root mean square of lift coefficient

C L1rms :

First cylinder rms of lift coefficient

C L2rms :

Second cylinder rms of lift coefficient

C L3rms :

Third cylinder rms of lift coefficient

C L4rms :

Fourth cylinder rms of lift coefficient

D :

Size of the cylinder

f i :

Particle distribution function

f (eq) i :

Equilibrium distribution function

f s :

Vortex-shedding frequency

g* :

Dimensionless separation ratio

g :

Distance between the cylinders

L x :

Length of the computational domain

L y :

Height of the computational domain

Ma:

Mach number

Re:

Reynolds number

St:

Strouhal number

St1:

First cylinder Strouhal number

St2:

Second cylinder Strouhal number

St3:

Third cylinder Strouhal number

St4:

Fourth cylinder Strouhal number

t :

Dimensionless time

U :

Uniform inflow velocity

u :

Velocity components

v :

Kinematic viscosity of fluid

ω i :

Weighting coefficients

x :

Position of particles

ρ :

Density of fluid

τ :

Single-relaxation-time parameter

e i :

Velocity particles

References

  1. Zdravkovich, M.M.: Review of flow interference between two circular cylinders normal to a stream. J. Fluids Eng. 99, 618–633 (1977)

    Article  Google Scholar 

  2. Bearman, P.W.; Wadcock, A.J.: The interaction between a pair of circular cylinders normal to a stream. J. Fluids Mech. 61, 499–511 (1973)

    Article  Google Scholar 

  3. Meneghini, J.R.; Saltara, F.: Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements. J. Fluids Struct. 15, 327–350 (2001)

    Article  Google Scholar 

  4. Kumada, M.; Hiwada, M.; Ito, M.; Mabuchi, I.: Wake interference between three circular cylinders arranged side-by-side normal to a flow. Trans. JSME 50, 1699–1707 (1984). (in Japanese)

    Article  Google Scholar 

  5. Alam, M.M.; Zheng, Q.; Hourigan, K.: The wake and thrust by four side-by-side cylinders at a low Re. J. Fluids Struct. 70, 131–144 (2017)

    Article  Google Scholar 

  6. Williamson, C.H.K.: Evolution of a single wake behind a pair of bluff bodies. J. Fluids Mech. 159, 1–18 (1985)

    Article  Google Scholar 

  7. Kang, S.: Numerical study on laminar flow over three side-by-side cylinders. KSME Int. J. 18, 1869–1879 (2004)

    Article  Google Scholar 

  8. Shengwei, M.; Kang, C.W.; Lim, T.B.A.; Wu, C.H.; Tutty, O.: Wake of two side-by-side square cylinders at low Reynolds numbers. Phys. Fluids 29, 1–23 (2017)

    Google Scholar 

  9. Zheng, Q.; Alam, M.M.: Intrinsic features of flow past three square prisms in side-by-side arrangement. J. Fluids Mech. 826, 996–1033 (2017)

    Article  MathSciNet  Google Scholar 

  10. Inoue, O.; Suzuki, Y.: Beat of sound generated by flow past three side-by-side square cylinders. Phys. Fluids 19, 1–4 (2007)

    Article  Google Scholar 

  11. Rahman, H.; Islam, S.U.; Zhou, C.Y.; Kiyani, T.; Saha, S.C.: On the effect of Reynolds number for flow past three side-by-side square cylinders for unequal gap spacings. KSCE J. Civil Eng. 19, 233–247 (2015)

    Article  Google Scholar 

  12. Islam, S.U.; Rahman, H.; Zhou, C.Y.; Saha, S.C.: Comparison of wake structures and force measurements behind three side-by-side cylinders. J. Braz. Soc. Mech. Sci. Eng. 38, 843–858 (2016)

    Article  Google Scholar 

  13. Norberg, C.: Flow around rectangular cylinders: Pressure forces and wake frequencies. J. Wind. Eng. Ind. Aerod 49, 187–196 (1993)

    Article  Google Scholar 

  14. Robichuax, J.; Balachandara, S.; Vanka, S.P.: Three-dimensional Fouquet instability of the wake of square cylinder. Phys. Fluids 11, 560–578 (1999)

    Article  MathSciNet  Google Scholar 

  15. Williamson, C.V.H.K.: Vortex dynamics in the cylinder wake. Annurev. Fluid 28, 477–539 (1996)

    MathSciNet  Google Scholar 

  16. Kumar, S.R.; Sharma, A.; Agrawal, A.: Simulation of flow around a row of square cylinders. J. Fluids Mech. 606, 369–397 (2008)

    Article  Google Scholar 

  17. He, X.; Luo, L.-S.: Lattice Boltzmann model for the incompressible Navier-Stokes equation. J. Stat. Phys. 88, 927–944 (1997)

    Article  MathSciNet  Google Scholar 

  18. Dazchi, Y.; Renwei, M.; Luo, L.-S.; Wei, S.: viscous flow computations with the method of lattice Boltzmann equation. Prog. Aerosp. Sci. 39, 329–367 (2003)

    Article  Google Scholar 

  19. Mohamad, A.A.: Lattice Boltzmann Method, Fundamentals and Engineering Applications with Computer Codes. Springer, Berlin (2011)

    MATH  Google Scholar 

  20. Succi, S.: Lattice Boltzmann Method for Fluid Dynamics and Beyond. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  21. Saha, A.K.; Biswas, G.; Muralidhar, K.: Three-dimensional study of flow past a square cylinder at low Reynolds numbers. Int. J. Heat Fluid Fl 24, 54–66 (2003)

    Article  Google Scholar 

  22. Guo, Z.; Liu, H.; Luo, L.-S.; Xu, K.: A comparative study of the LBE and GKS methods for 2D near incompressible laminar flows. J. Comput. Phys. 227, 4955–4976 (2008)

    Article  MathSciNet  Google Scholar 

  23. Sukop, M.C.; Thorne, D.T.: Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers, p. 172. Springer, Berlin (2007)

    Google Scholar 

  24. Shimizu, Y.; Tanida, Y.: Fluid forces acting on cylinders of rectangular cross section. Trans. Bull. Jpn. Soc. Mech. Eng. 44, 2699–2706 (1978)

    Article  Google Scholar 

  25. Sharma, A.; Eswaran, V.: Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime. Numer. Heat. Trans. A Appl. 45, 247–269 (2004)

    Article  Google Scholar 

  26. Sohankar, A.; Norberg, C.; Davidson, L.: Numerical simulation of unsteady low-Reynolds number flow around rectangular cylinders at incidence. J. Wind. Eng. Ind. Aerod. 69–71, 189–201 (1997)

    Article  Google Scholar 

  27. Chatterjee, D.; Biswas, G.; Amiroudine, S.: Numerical simulation of flow past row of square cylinders for various separation ratios. Comput. Fluids 39, 49–59 (2010)

    Article  Google Scholar 

  28. Rosenfeld, M.; Kwak, D.; Vinokur, M.: A fractional step solution method for the unsteady incompressible Navier-stokes equations in generalized coordinate systems. J. Comput. Phys. 94(1), 102–137 (1991)

    Article  Google Scholar 

  29. Lele, S.K.: Compact finite difference scheme with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  Google Scholar 

  30. Sengupta, T.K.; Sengupta, A.: Analysis and design of a new dispersion relation preserving alternate bi-diagonal compact scheme. J. Sci. Comput. 310, 92–115 (2015)

    Google Scholar 

  31. Levitas, V.I.; Roy, A.M.; Preston, D.L.: Multiple twinning and variant-variant transformations in martensite: Phase-field approach. Phys. Rev. B 88(5), 054113 (2013)

    Article  Google Scholar 

  32. Levitas, V.I.; Roy, A.M.: Multiphase phase field theory for temperature- and stress-induced phase transformations. Phys. Rev. B 91(17), 174109 (2015)

    Article  Google Scholar 

  33. Levitas, V.I.; Roy, A.M.: Multiphase phase field theory for temperature-induced phase transformations: Formulation and application to interfacial phases. Acta Mater. 105, 244–257 (2016)

    Article  Google Scholar 

  34. Atmaca, M.; Cetin, B.; Yılmaz, E.: CFD analysis of unmanned aerial vehicles (UAV) moving in Flocks. Acta Phys. Polonica A 134, 694–694 (2004)

    Google Scholar 

  35. Atmaca, M.; Girgin, I.; Ezgi, C.: CFD modeling of a diesel evaporator used in fuel cell systems. Int. J. Hydrogen Energy 41(14), 6004–6012 (2016)

    Article  Google Scholar 

  36. Atmaca, M.; Ezgi. C. Three-dimensional CFD modeling of a steam ejector. Energy Source Part A, 1–12 (2019). https://doi.org/10.1080/15567036.2019.1649326

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shams-ul-Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shams-ul-Islam, Ullah, N. & Zhou, C.Y. Fluid Dynamics of Flow Around Side-by-Side Arranged Cylinders. Arab J Sci Eng 45, 5907–5923 (2020). https://doi.org/10.1007/s13369-020-04603-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04603-6

Keywords

Navigation