Skip to main content
Log in

Effects of Cutting Speed on MQL Machining Performance of AISI 304 Stainless Steel Using Uncoated Carbide Insert: Application Potential of Coconut Oil and Rice Bran Oil as Cutting Fluids

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In metal machining, minimum quantity lubrication (MQL) refers to supply of an optimal amount of cutting fluid into tool-work interfacial region. As compared to traditional dry machining, machining process executed under MQL has several advantages. Properties of cutting fluid play important role toward machining performance. In the present work, application potential of rice bran oil is compared with coconut oil in the context of MQL machining of AISI 304 stainless steel. Cutting force magnitude, approximate tool-tip temperature, flank wear depth, etc., are studied as machining performance indicators. In addition, different tool wear mechanisms, chip morphology, and surface roughness of the machined work part are studied in detail. It is experienced that MQL (rice bran oil) outperforms MQL (coconut oil). MQL (rice bran oil) exhibits lower cutting force, lesser tool-tip temperature, reduced extent of tool wear, and better machined surface finish than dry as well as MQL (coconut oil) machining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Korkut, I.; Kasap, M.; Ciftci, I.; Seker, U.: Determination of optimum cutting parameters during machining of AISI 304 austenitic stainless steel. Mater. Des. 25(4), 303–305 (2004)

    Google Scholar 

  2. Agrawal, S.; Chakrabarti, A.K.; Chattopadhyay, A.B.: A study of the machining of cast austenitic stainless-steels with carbide tools. J. Mater. Proc. Technol. 52(2–4), 610–620 (1995)

    Google Scholar 

  3. Ezugwu, E.O.; Olajire, K.A.: Evaluation of machining performance of martensitic stainless steel (JETHETE). Tribol. Lett. 12(3), 183–187 (2002)

    Google Scholar 

  4. O’Sullivan, D.; Cotterell, M.: Machinability of austenitic stainless steel SS303. J. Mater. Proc. Technol. 124(1–2), 153–159 (2002)

    Google Scholar 

  5. Ciftci, I.: Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools. Tribol. Int. 39(6), 565–569 (2006)

    Google Scholar 

  6. Kurniawan, D.; Yusof, N.M.; Sharif, S.: Hard machining of stainless steel using wiper coated carbide: tool life and surface integrity. Mater. Manuf. Proc. 25(6), 370–377 (2010)

    Google Scholar 

  7. Wagh, S.S.; Kulkarni, A.P.; Sargade, V.G.: Machinability studies of austenitic stainless steel (AISI 304) using PVD cathodic arc evaporation (CAE) system deposited AlCrN/TiAlN coated carbide inserts. Procedia Eng. 64, 907–914 (2013)

    Google Scholar 

  8. Yin, Z.; Huang, C.; Yuan, J.; Zou, B.; Liu, H.; Zhu, H.: Cutting performance and life prediction of an Al2O3/TiC micro–nano-composite ceramic tool when machining austenitic stainless steel. Ceram. Int. 41(5), 7059–7065 (2015)

    Google Scholar 

  9. Sobiyi, K.; Sigalas, I.: High-speed machining of martensitic stainless steel using PcBN. J. Superhard Mater. 38(1), 34–39 (2016)

    Google Scholar 

  10. Xu, Y.; Zou, P.; He, Y.; Chen, S.; Tian, Y.; Gao, X.: Comparative experimental research in turning of 304 austenitic stainless steel with and without ultrasonic vibration. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 231(15), 2885–2901 (2017)

    Google Scholar 

  11. Rajaguru, J.; Arunachalam, N.: Coated tool performance in dry turning of super duplex stainless steel. Procedia Manuf. 10, 601–611 (2017)

    Google Scholar 

  12. Zerti, A.; Yallese, M.A.; Meddour, I.; Belhadi, S.; Haddad, A.; Mabrouki, T.: Modeling and multi-objective optimization for minimizing surface roughness, cutting force, and power, and maximizing productivity for tempered stainless steel AISI 420 in turning operations. Int. J. Adv. Manuf. Technol. 102(1–4), 135–157 (2019)

    Google Scholar 

  13. Hoier, P.; Malakizadi, A.; Friebe, S.; Klement, U.; Krajnik, P.: Microstructural variations in 316L austenitic stainless steel and their influence on tool wear in machining. Wear 428–429, 315–327 (2019)

    Google Scholar 

  14. Courbon, C.; Kramar, D.; Krajnik, P.; Pusavec, F.; Rech, J.; Kopac, J.: Investigation of machining performance in high-pressure jet assisted turning of Inconel 718. An experimental study. Int. J. Mach. Tool Manuf. 49(14), 1114–1125 (2009)

    Google Scholar 

  15. El Baradie, M.A.: Cutting fluids, Part I: characterisation. J. Mater. Process. Technol. 56(1–4), 786–797 (1996)

    Google Scholar 

  16. Hong, S.Y.; Broomer, M.: Economical and ecological cryogenic machining of AISI 304 austenitic stainless steel. Clean Prod. Proc. 2(3), 157–166 (2000)

    Google Scholar 

  17. Ahmed, Y.S.; Paiva, J.M.; Veldhuis, S.C.: Characterization and prediction of chip formation dynamics in machining austenitic stainless steel through supply of a high-pressure coolant. Int. J. Adv. Manuf. Technol. 102(5–8), 1671–1688 (2019)

    Google Scholar 

  18. Elmunafi, M.H.S.; Yusof, N.M.; Kurniawan, D.: Effect of cutting speed and feed in turning hardened stainless steel using coated carbide cutting tool under minimum quantity lubrication using castor oil. Adv. Mech. Eng. 7(8), 1–7 (2015)

    Google Scholar 

  19. Dureja, J.S.; Singh, R.; Singh, T.; Singh, P.; Dogra, M.; Bhatti, M.S.: Performance evaluation of coated carbide tool in machining of stainless steel (AISI 202) under minimum quantity lubrication (MQL). Int. J. Precis. Eng. Manuf. Green Technol. 2(2), 123–129 (2015)

    Google Scholar 

  20. Xu, C.; Xu, T.; Li, H.; Shi, Z.; Jing, H.; Liu, M.: Friction, wear, and cutting tests on 022Cr17Ni12Mo2 stainless steel under minimum quantity lubrication conditions. Int. J. Adv. Manuf. Technol. 90(1–4), 677–689 (2017)

    Google Scholar 

  21. Sivaiah, P.; Chakradhar, D.: Effect of cryogenic coolant on turning performance characteristics during machining of 17-4 PH stainless steel: a comparison with MQL, wet, dry machining. CIRP J. Manuf. Sci. Technol. 21, 86–96 (2018)

    Google Scholar 

  22. Bonfá, M.M.; Costa, É.S.; Sales, W.F.; Amorim, F.L.; Maia, L.H.A.; Machado, Á.R.: Evaluation of tool life and workpiece surface roughness in turning of AISI D6 hardened steel using PCBN tools and minimum quantity of lubricant (MQL) applied at different directions. Int. J. Adv. Manuf. Technol. 103(1–4), 971–984 (2019)

    Google Scholar 

  23. Klocke, F.; Eisenblatter, G.: Dry cutting. CIRP Ann. Manuf. Technol. 46(2), 519–526 (1997)

    Google Scholar 

  24. Marksberry, P.W.: Micro-flood (MF) technology for sustainable manufacturing operations that are coolant less and occupationally friendly. J. Clean. Prod. 15(10), 958–971 (2007)

    Google Scholar 

  25. Lawal, S.A.; Choudhury, I.A.; Nukman, Y.: A critical assessment of lubrication techniques in machining processes: a case for minimum quantity lubrication using vegetable oil-based lubricant. J. Clean. Prod. 41, 210–221 (2013)

    Google Scholar 

  26. Weinert, K.; Inasaki, I.; Sutherland, J.W.; Wakabayashi, T.: Dry machining and minimum quantity lubrication. CIRP Ann. Manuf. Technol. 53(2), 511–537 (2004)

    Google Scholar 

  27. Autret, R.; Liang, S.Y.: Minimum quantity lubrication in finish hard turning. In: Proceedings of International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, Manila (2003)

  28. Davim, J.P.; Sreejith, P.S.; Silva, J.: Turning of brasses using minimum quantity of lubricant (MQL) and flooded lubricant conditions. Mater. Manuf. Proc. 22(1), 45–50 (2007)

    Google Scholar 

  29. Davim, J.P.; Sreejith, P.S.; Gomes, R.; Peixoto, C.: Experimental studies on drilling of aluminium (AA1050) under dry, minimum quantity of lubricant, and flood-lubricated conditions. Proc. Inst. Mech. Eng. Part B: J. Mech. Eng. Sci. 220(10), 1605–1611 (2006)

    Google Scholar 

  30. Gaitonde, V.N.; Karnik, S.R.; Davim, J.P.: Optimal MQL and cutting conditions determination for desired surface roughness in turning of brass using genetic algorithms. Mach. Sci. Technol. Int. J. 16(2), 304–320 (2012)

    Google Scholar 

  31. Carou, D.; Rubio, E.; Davim, J.P.: A note on the use of the minimum quantity lubrication (MQL) system in turning. Ind. Lubr. Tribol. 67(3), 256–261 (2015)

    Google Scholar 

  32. Carou, D.; Rubio, E.H.; Lauro, C.H.; Davim, J.P.: The effect of minimum quantity lubrication in the intermittent turning of magnesium based on vibration signals. Measurement 94, 338–343 (2016)

    Google Scholar 

  33. Gupta, K.; Laubscher, R.F.; Davim, J.P.; Jain, N.K.: Recent developments in sustainable manufacturing of gears: a review. J. Clean. Prod. 112(4), 3320–3330 (2016)

    Google Scholar 

  34. Davim, J.P. (ed.): Sustainable Manufacturing. ISTE-Wiley, London (2010)

    Google Scholar 

  35. Davim, J.P. (ed.): Green Manufacturing Processes and Systems. Springer, Heidelberg (2013)

    Google Scholar 

  36. Drlička, R.; Kročko, V.; Matúš, M.: Machinability improvement using high pressure cooling in turning. Res. Agric. Eng. 60, s70–s76 (2014)

    Google Scholar 

  37. Debnath, S.; Reddy, M.M.; Yi, Q.S.: Environmental friendly cutting fluids and cooling techniques in machining: a review. J. Clean. Prod. 83, 33–47 (2014)

    Google Scholar 

  38. Lawal, S.A.; Choudhury, I.A.; Nukman, Y.: Evaluation of vegetable and mineral oil-in-water emulsion cutting fluids in turning AISI 4340 steel with coated carbide tools. J. Clean. Prod. 66, 610–618 (2014)

    Google Scholar 

  39. Ojolo, S.; Amuda, M.; Ogunmola, O.; Ononiwu, C.: Experimental determination of the effect of some straight biological oils on cutting force during cylindrical turning. Matéria (Rio de Janeiro) 13(4), 650–663 (2008)

    Google Scholar 

  40. Xavior, M.A.; Adithan, M.: Determining the influence of cutting fluids on tool wear and surface roughness during turning of AISI 304 austenitic stainless steel. J. Mater. Proc. Technol. 209(2), 900–909 (2009)

    Google Scholar 

  41. Khan, M.M.A.; Mithu, M.A.H.; Dhar, N.R.: Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil-based cutting fluid. J. Mater. Proc. Technol. 209(15–16), 5573–5583 (2009)

    Google Scholar 

  42. Krishna, P.V.; Srikant, R.R.; Rao, D.N.: Experimental investigation on the performance of nanoboric acid suspensions in SAE-40 and coconut oil during turning of AISI 1040 steel. Int. J. Mach. Tools Manuf. 50(10), 911–916 (2010)

    Google Scholar 

  43. Ojolo, S.J.; Ohunakin, O.S.: Study of rake face action on cutting using palm-kernel oil as lubricant. J. Emerg. Trends Eng. Appl. Sci. 2(1), 30–35 (2011)

    Google Scholar 

  44. Gill, S.S.; Singh, J.; Singh, H.; Singh, R.: Metallurgical and mechanical characteristics of cryogenically treated tungsten carbide (WC–Co). Int. J. Adv. Manuf. Technol. 58(1–4), 119–131 (2012)

    Google Scholar 

  45. Katna, R.; Suhaib, M.; Agrawal, N.; Singh, K.; Jain, S.; Maji, S.: Green machining: studying the impact of viscosity of green cutting fluid on surface quality in straight turning. J. Phys. Conf. Ser. 1276(1), 012036 (2019)

    Google Scholar 

  46. Lawal, S.A.; Choudhury, I.A.; Nukman, Y.: Application of vegetable oil-based metalworking fluids in machining ferrous metals—a review. Int. J. Mach. Tools Manuf. 52(1), 1–12 (2012)

    Google Scholar 

  47. Kaynak, Y.; Karaca, H.E.; Noebe, R.D.; Jawahir, I.S.: Tool-wear analysis in cryogenic machining of NiTi shape memory alloys: a comparison of tool-wear performance with dry and MQL machining. Wear 306(1–2), 51–63 (2013)

    Google Scholar 

  48. Diniz, A.E.; Machado, Á.R.; Corrêa, J.G.: Tool wear mechanisms in the machining of steels and stainless steels. Int. J. Adv. Manuf. Technol. 87(9–12), 3157–3168 (2016)

    Google Scholar 

  49. Singh, D.; Rao, P.V.: Flank wear prediction of ceramic tools in hard turning. Int. J. Adv. Manuf. Technol. 50(5–8), 479–493 (2010)

    Google Scholar 

  50. Dhar, N.R.; Kamruzzaman, M.; Ahmed, M.: Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel. J. Mater. Proc. Technol. 172(2), 299–304 (2006)

    Google Scholar 

  51. Liao, Y.S.; Lin, H.M.: Mechanism of minimum quantity lubrication in high-speed milling of hardened steel. Int. J. Mach. Tools Manuf. 47(11), 1660–1666 (2007)

    Google Scholar 

  52. Kasim, M.S.; Haron, C.C.; Ghani, J.A.; Sulaiman, M.A.; Yazid, M.Z.A.: Wear mechanism and notch wear location prediction model in ball nose end milling of Inconel 718. Wear 302(1–2), 1171–1179 (2013)

    Google Scholar 

  53. Maruda, R.W.; Krolczyk, G.M.; Niesłony, P.; Krolczyk, J.B.; Legutko, S.: Chip formation zone analysis during the turning of austenitic stainless steel 316L under MQCL cooling condition. Procedia Eng. 149, 297–304 (2016)

    Google Scholar 

  54. Das, R.K.; Sahoo, A.K.; Mishra, P.C.; Kumar, R.; Panda, A.: Comparative machinability performance of heat treated 4340 Steel under dry and minimum quantity lubrication surroundings. Procedia Manuf. 20, 377–385 (2018)

    Google Scholar 

  55. Li, P.; Qiu, X.; Zhang, L.; Tang, S.: Study on serrated chip formation and tool wear of cermet tools for milling stainless steel 3Cr13Cu. Int. J. Adv. Manuf. Technol. 77(1–4), 461–467 (2015)

    Google Scholar 

  56. Morehead, M.D.; Huang, Y.; Luo, J.: Chip morphology characterization and modeling in machining hardened 52100 steels. Mach. Sci. Technol. 11(3), 335–354 (2007)

    Google Scholar 

  57. Shyha, I.; Gariani, S.; El-Sayed, M.; Huo, D.: Analysis of microstructure and chip formation when machining Ti–6Al–4V. Metals 8(3), 185 (2018). https://doi.org/10.3390/met8030185

    Article  Google Scholar 

  58. Joshi, S.; Tewari, A.; Joshi, S.S.: Microstructural characterization of chip segmentation under different machining environments in orthogonal machining of Ti6Al4V. J. Eng. Mater. Technol. 137(1), 011005 (2015)

    Google Scholar 

  59. Su, G.; Liu, Z.; Li, L.; Wang, B.: Influences of chip serration on micro-topography of machined surface in high-speed cutting. Int. J. Mach. Tools Manuf. 89, 202–207 (2015)

    Google Scholar 

  60. Thakur, D.G.; Ramamoorthy, B.; Vijayaraghavan, L.: Machinability investigation of Inconel 718 in high-speed turning. Int. J. Adv. Manuf. Technol. 45(5–6), 421–429 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurav Datta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedi, S.S., Behera, G.C. & Datta, S. Effects of Cutting Speed on MQL Machining Performance of AISI 304 Stainless Steel Using Uncoated Carbide Insert: Application Potential of Coconut Oil and Rice Bran Oil as Cutting Fluids. Arab J Sci Eng 45, 8877–8893 (2020). https://doi.org/10.1007/s13369-020-04554-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04554-y

Keywords

Navigation