Skip to main content
Log in

A Passive Approach for Detecting Image Splicing Based on Deep Learning and Wavelet Transform

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Splicing image forgery detection has become a significant research subject in multimedia forensics and security due to its widespread use and its hard detection. Many algorithms have already been executed on the image splicing. The existing algorithms may be affected by some problems, such as high feature dimensionality and low accuracy with high false positive rates. In this paper, an algorithm based on deep learning approach and wavelet transform is proposed to detect the spliced image. In the deep learning approach, convolutional neural network (CNN) is employed to automatically extract features from the spliced image. CNN is applied and then discrete wavelet transform (DWT) is used. Support vector machine is used later for classification. Additional experiments are performed. That is, discrete cosine transform replaces DWT and then principal component analysis is applied. The proposed algorithm is evaluated on a publicly available image splicing datasets (CASIA v1.0 and CASIA v2.0). It achieves high accuracy while using a relatively low-dimensional feature vector. Our results demonstrate that the proposed algorithm is effective and accomplishes better performance for detecting the spliced image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumar, C.; Singh, A.K.; Kumar, P.: A recent survey on image watermarking techniques and its application in e-governance. Multimed. Tools Appl. 77(3), 3597–3622 (2017)

    Article  Google Scholar 

  2. Qazi, T.; Hayat, K.; Khan, S.U.; Madani, S.A.; Khan, I.A.; Kołodziej, J.; Li, H.; Lin, W.; Yow, K.C.; Xu, C.-Z.: Survey on blind image forgery detection. J. IET Image Process. 7(7), 660–670 (2013)

    Article  Google Scholar 

  3. Kapse, A.S.; Belokar, S.; Gorde, Y.; Rane, R.; Yewtkar, S.: Digital image security using digital watermarking. Int. Res. J. Eng. Technol. 5(3), 163–166 (2018)

    Google Scholar 

  4. Burvin, P.S.; Esther, J.M.: Analysis of digital image splicing detection. J. Comput. Eng. (IOSR-JCE) 16(2), 10–13 (2014)

    Article  Google Scholar 

  5. Liua, W.; Wanga, Z.; Liua, X.; Zengb, N.; Liucd, Y.; Alsaadid, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234(19), 11–26 (2017)

    Google Scholar 

  6. Zhang, Y.; Zhao, C.; Pi, Y.; Li, S.; Wang, S.: Image-splicing forgery detection based on local binary patterns of DCT coefficients. Security and communication networks. J. Secur. Commun. Netw. 8(14), 2386–2395 (2015)

    Article  Google Scholar 

  7. Muhammad, G.; Al-Hammadi, M.H.; Hussain, M.; Bebis, G.: Image forgery detection using steerable pyramid transform and local binary pattern. J. Mach. Vis. Appl. 25(4), 985–995 (2014)

    Article  Google Scholar 

  8. Kaur, M.; Gupta, S.: A passive blind approach for image splicing detection based on DWT and LBP histograms. In: Proceedings of International Symposium on Security in Computing and Communication, pp. 318–327, Chandigarh (Sept. 2016)

  9. Abd El-Latif, E.I.; Taha, A.; Zayed, H.H.: Image splicing detection using uniform local binary pattern and wavelet transform. J. Eng. Appl. Sci. 14(20), 7679–7684 (2019)

    Article  Google Scholar 

  10. El-Alfy, E.-S.M.; Qureshi, M.A.: Combining spatial and DCT based Markov features for enhanced blind detection of image splicing. Int. J. Pattern Anal. Appl. 18(3), 713–723 (2015)

    Article  MathSciNet  Google Scholar 

  11. Li, C.; Ma, Q.; Xiao, L.; Li, M.; Zhang, A.: Image splicing detection based on Markov features in QDCT domain. Int. J. Neurocomput. 228(8), 29–36 (2017)

    Google Scholar 

  12. Han, J.G.; Park, T.H.; Moon, Y.H.; Eoma, I.K.: Efficient Markov feature extraction method for image splicing detection using maximization and threshold. Int. J. Electron. Imaging 25(2), 023031 (2016)

    Article  Google Scholar 

  13. Zhang, Y.; Goh, J.; Win, L.L.; Thing, V.L.L.: Image region forgery detection: a deep learning approach. In: Proceedings of the Singapore Cyber-Security Conference (SG-CRC), pp. 1–11 (Jan. 2016)

  14. Bayar, B.; Stamm, M.C.: A deep learning approach to universal image manipulation detection using a new convolutional layer. In: Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, pp. 5–10, Vigo (June 2016)

  15. Lee, H.; Ekanadham, C.; Ng, A.Y.: Sparse deep belief net model for visual area V2. In: Proceedings of Neural Information Processing Systems, pp. 873–880, Vancouver (Dec. 2008)

  16. Larochelle, H.; Bengio, Y.; Louradour, J.; Lamblin, P.: Exploring strategies for training deep neural networks. J. Mach. Learn. Res. 10, 1–40 (2009)

    MATH  Google Scholar 

  17. Aker, C.; Kalkan, S.: Using deep networks for drone detection. In: Proceeding of 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6, Lecce (Aug. 2017)

  18. Krizhevsky, A.; Sutskever, I.; Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of Advances in Neural Information, pp. 1097–1105, USA (Dec. 2012)

  19. Kingsbury, N.; Magarey, J.: Wavelet transforms in image processing. In: Proceedings of Signal Analysis and Prediction, pp. 27–46. Birkhäuser, Boston (Mar. 1998)

  20. Bhatia, N.: Survey of nearest neighbor techniques. J. Int. J. Comput. Sci. Inf. Secur. 8(2), 302–305 (2010)

    MathSciNet  Google Scholar 

  21. Lakshmi, K.V.; Kumari, N.S.: Survey on naive Bayes algorithm. In: Proceedings of International Conference on Research in Science, Technology and Management, Hyderabad (Mar. 2018)

  22. Ben-Hur, A.; Weston, J.: A user’s guide to support vector machines. J. Data Min. Tech. Life Sci. 609, 223–239 (2010)

    Article  Google Scholar 

  23. Zhan, L.; Zhu, Y.; Mo, Z.: An image splicing detection method based on PCA minimum eigenvalues. J. Inf. Hiding Multimed. Signal Process. 7(3), 12 (2016)

    Google Scholar 

  24. CASIA Tampered Image Detection Evaluation Database (CASIA TIDE v1.0). http://forensics.idealtest.org:8080/index_v1.html

  25. CASIA Tampered Image Detection Evaluation Database (CASIA TIDE v2.0). http://forensics.idealtest.org:8080/index_v2.html.

  26. Saleh, S.Q.; Hussain, M.; Muhammad, G.; Bebis, G.: Evaluation of image forgery detection using multi-scale weber local descriptors. J. Int. Symp. Vis. Comput. 24(4), 416–424 (2015)

    Google Scholar 

  27. Mushtaq, S.; Mir, A.H.: Novel method for image splicing detection. In: Proceedings of Advances in Computing, Communications and Informatics (ICACCI), pp. 24–27, New Delhi (Sept. 2014)

  28. Shah, A.; El-Alfy, E.-S.M.: Image splicing forgery detection using DCT coefficients with multi-scale LBP. In: Proceeding of International Conference on Computing Sciences and Engineering (ICCSE), pp. 1–6. IEEE, Kuwait City (June 2018)

  29. Kanwal, N.; Girdhar, A.; Kaur, L.; Bhullar, J.S.: Detection of digital image forgery using fast Fourier transform and local features. In: Proceeding of International Conference on Automation, Computational and Technology Management (ICACTM), pp. 262–267. IEEE, London (July 2019)

  30. He, Z.; Lu, W.; Sun, W.; Huang, J.: Digital image splicing detection based on Markov features in DCT and DWT domain. J. Pattern Recognit. 45(12), 4292–4299 (2012)

    Article  Google Scholar 

  31. Armas Vega, E.A.; Sandoval Orozco, A.L.; García Villalba, L.J.; Hernandez Castro, J.: Digital images authentication technique based on DWT, DCT and local binary patterns. Sensors 18(10), 3372 (2018)

    Article  Google Scholar 

  32. Kirchner, M.; Fridrich, J.: On detection of median filtering in digital images. In: Proceedings of SPIE, Media Forensics Secure. II, vol. 7541, pp. 754110-1–754110-12 (Jan. 2010)

  33. Zhao, X.; Wang, S.; Li, S.; Li, J.: Passive image-splicing detection by a 2-D noncausal markov mode. J. IEEE Trans. Circuits Syst. Video Technol. 25(2), 185–199 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman I. Abd El-Latif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd El-Latif, E.I., Taha, A. & Zayed, H.H. A Passive Approach for Detecting Image Splicing Based on Deep Learning and Wavelet Transform. Arab J Sci Eng 45, 3379–3386 (2020). https://doi.org/10.1007/s13369-020-04401-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04401-0

Keywords

Navigation