Skip to main content
Log in

Numerical Investigations of Mini-Channel Heat Sink for Microprocessor Cooling: Effect of Slab Thickness

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

High heat generation in microelectronics devices is an inevitable consequence of high processing loads. One of the important factors in design of electronic devices is to design a smart cooling system to remove the generated heat well in time for a reliable and longer life. Water-cooled heat sinks are replacing air-cooled heat sinks with the rapid compactness and high process requirements. In this work, we introduced a slab in mini-channel and evaluated the thermal performance of mini-channel heat sink. The boundary layer separately develops in upper and lower portions of channel, which enhanced the heat transfer. We changed the thickness of slab from 0.2 to 1.6 mm for fin spacing of 0.5 mm and 1 mm, respectively, to determine the effects of thickness on overall thermal performance of heat sink. The computed values were then compared with the data available in the literature without slab. The minimum base temperatures recorded for 0.2-mm-thick slab with fin spacing of 0.5 mm and 1.0 mm were 40.1 °C and 42.4 °C, respectively. This represents a reduction of 12.5% and 16.2%, respectively, in the base temperature as compared to the base temperature without a slab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

Width of finned section (mm)

A sf :

Surface area of heat sink (m2)

A c :

Cross-sectional area of channel (m2)

α sf :

Surface area density (1/m)

B :

Un-finned length (mm)

c :

Fin spacing (mm)

c c :

Centre-to-centre distance between two consecutive channels (mm)

h :

Height of fin (mm)

h f :

Height from bottom to inlet/outlet face (mm)

l :

Length of fin (mm)

l b :

Square chip base length (mm)

:

Mass flow rate (kg/s)

P :

Perimeter of channel (m)

Pr:

Prandtl number

ΔP :

Pressure drop (Pa)

\( \dot{Q} \) :

Heat transfer rate (W)

q :

Heat flux (W/cm2)

R th :

Thermal resistance (°C/W)

Re:

Reynolds number

S t :

Slab thickness (mm)

T B :

Base temperature (°C)

t :

Thickness of fins (mm)

t b :

Thickness of heat sink base plate (mm)

t c :

Chip thickness (mm)

T i :

Fluid inlet temperature (°C)

T o :

Fluid outlet temperature (°C)

U in :

Inlet velocity (m/s)

U, v, w :

Velocity in x, y, z, respectively, (m/s)

α sf :

Surface area density (1/m)

µ t :

Turbulence viscosity (kg/ms)

µ :

Dynamic viscosity (kg/ms)

λ :

Thermal conductivity (W/m °C)

ρ :

Density of fluid (kg/m3)

CFD:

Computational fluid dynamics

LPM:

Litres per minute

References

  1. Sivasankaran, H.; Asirvatham, G.; Bose, J.; Albert, B.: Experimental analysis of parallel plate and crosscut pin fin heat sinks for electronic cooling applications. Therm. Sci. 14(1), 147–156 (2010)

    Article  Google Scholar 

  2. Tariq, H.A.; Israr, A.; Khan, Y.I.; Anwar, M.: Numerical and experimental study of cellular structures as a heat dissipation media. Heat Mass Transf. 55(2), 501–511 (2019)

    Article  Google Scholar 

  3. Chen, C.; Wang, C.: A novel trapezoid fin pattern applicable for air-cooled heat sink. Heat Mass Transf. 51(11), 1631–1637 (2015)

    Article  Google Scholar 

  4. Tariq, H.A.; Shoukat, A.A.; Anwar, M.; Israr, A.; Ali, H.M.: Water cooled micro-hole cellular structure as a heat dissipation media: an experimental and numerical study. Therm. Sci. (2018). https://doi.org/10.2298/TSCI180219184T

    Article  Google Scholar 

  5. Tariq, H.A.; Shoukat, A.A.; Hassan, M.; Anwar, M.: Thermal management of microelectronic devices using micro-hole cellular structure and nanofluids. J. Therm. Anal. Calorim. 136(5), 2171–2182 (2019)

    Article  Google Scholar 

  6. Tian, J.; Lu, T.J.; Hodson, H.P.; Queheillalt, D.T.; Wadley, H.N.G.: Thermal-hydraulic performance of sandwich structures with crossed tube truss core and embedded heat pipes. In: 13th International Heat Pipe Conference (13th IHPC), Shanghai, China, 2004, pp. 21–25

  7. Liao, G.; Wang, X.; Bai, X.; Zhu, D.: Numerical Investigation on the flow and heat transfer characteristics of the superheated steam in the wedge duct with pin-fins. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, 2013, 3A

  8. Bianchini, C.; Facchini, B.; Simonetti, F.; Tarchi, L.; Zecchi, S.: Numerical and experimental investigation of turning flow effects on innovative pin fin arrangements for trailing edge cooling configurations. J. Turbomach. 134(2), 021005-1 (2012)

    Article  Google Scholar 

  9. Yang, Y.; Li, Y.; Si, B.; Zheng, J.: Performance evaluation of heat transfer enhancement for offset strip fins used in plate-fin heat exchangers. J. Heat Transf. 137(10), 101901 (2015)

    Article  Google Scholar 

  10. Snoussi, L.; et al.: Natural convection heat transfer in a nanofluid filled U-shaped enclosures: numerical investigations. Heat Transfer Eng. 39(16), 1450–1460 (2018)

    Article  Google Scholar 

  11. Kahani, M.: Simulation of nanofluid flow through rectangular microchannel by modified thermal dispersion model. Heat Transfer Eng. (2019). https://doi.org/10.1080/01457632.2018.1540464

    Article  Google Scholar 

  12. Xie, G.; Song, Y.; Asadi, M.; Lorenzini, G.: Optimization of pin-fins for a heat exchanger by entropy generation minimization and constructal law. J. Heat Transf. 137(6) (2015)

  13. Tang, B.; et al.: Heat transfer performance of a novel double-layer mini-channel heat sink. Heat Mass Transf. 53(3), 929–936 (2017)

    Article  Google Scholar 

  14. Hung, T.C.; Huang, Y.X.; Yan, W.M.: Thermal performance analysis of porous-microchannel heat sinks with different configuration designs. Int. J. Heat Mass Transf. 66, 235–243 (2013)

    Article  Google Scholar 

  15. Bello-Ochende, T.; Liebenberg, L.; Meyer, J.P.: Constructal cooling channels for micro-channel heat sinks. Int. J. Heat Mass Transf. 50, 4141–4150 (2007)

    Article  Google Scholar 

  16. Zunaid, M.; Jindal, A.; Gakhar, D.; Sinha, A.: Numerical study of pressure drop and heat transfer in a straight rectangular and semi cylindrical projections microchannel heat sink. J. Therm. Eng. 3(5), 1453–1465 (2017)

    Article  Google Scholar 

  17. Belhadj, A.; Bouchenafa, R.; Saim, R.: A numerical study of forced convective flow in microchannels heat sinks with periodic expansion-constriction cross section. J. Therm. Eng. 4(3), 1912–1925 (2018)

    Article  Google Scholar 

  18. Xie, X.L.; Tao, W.Q.; He, Y.L.: Numerical study of turbulent heat transfer and pressure drop characteristics in water-cooled minichannel heat sink. J. Electron. Packag. 129, 247–255 (2007)

    Article  Google Scholar 

  19. Xie, X.L.; Liu, Z.J.; He, Y.L.; Tao, W.Q.: Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink. Appl. Therm. Eng. 29, 64–74 (2009)

    Article  Google Scholar 

  20. Saeed, M.; Kim, M.-H.: Numerical study on thermal hydraulic performance of water cooled mini-channel heat sinks. Int. J. Refrig 69, 147–164 (2016)

    Article  Google Scholar 

  21. Saeed, M.; Kim, M.: Heat transfer enhancement using nanofluids (Al2O3–H2O) in mini-channel heatsinks. Int. J. Heat Mass Transf. 120, 671–682 (2018)

    Article  Google Scholar 

  22. Jajja, S.A.; Ali, W.; Ali, H.M.; Ali, A.M.: Water cooled minichannel heat sinks for microprocessor cooling: effect of fin spacing. Appl. Therm. Eng. 64, 76–82 (2014)

    Article  Google Scholar 

  23. Dixit, T.; Ghosh, I.: Low Reynolds number thermo-hydraulic characterization of offset and diamond minichannel metal heat sinks. Exp. Therm. Fluid Sci. 51, 227–238 (2013)

    Article  Google Scholar 

  24. Ali, M.; Shoukat, A.A.; Tariq, H.A.; Anwar, M.; Ali, H.: Header design optimization of mini-channel heat sinks using CuO–H2O and Al2O3–H2O nanofluids for thermal management. Arab. J. Sci. Eng. 44(12), 10327–10338 (2019)

    Article  Google Scholar 

  25. Anwar, M.; Tariq, H.A.; Shoukat, A.A.; Ali, H.M.; Ali, H.: Numerical study for heat transfer enhancement using CuO–H2O nano-fluids through minichannel for microprocessor cooling. J. Therm. Sci. (2019). https://doi.org/10.2298/TSCI180722022A

    Article  Google Scholar 

  26. Snoussi, L.; et al.: Numerical simulation of nanofluids for improved cooling efficiency in a 3D copper microchannel heat sink (MCHS). J. Phys. Chem. Liq. 56(3), 311–331 (2018)

    Article  Google Scholar 

  27. Chamkha, A.J.; Molana, M.; Rahnama, A.; Ghadami, F.: On the nanofluids applications in microchannels: a comprehensive review. Powder Technol. 332, 287–322 (2018)

    Article  Google Scholar 

  28. Chamkha, A.J.: Hydromagnetic two-phase flow in a channel. Int. J. Eng. Sci. 33(3), 437–446 (1995)

    Article  Google Scholar 

  29. Shashikumar, N.S.; Gireesha, B.J.; Mahanthesh, B.; Prasannakumara, B.C.; Chamkha, A.J.: Entropy generation analysis of magneto-nanoliquids embedded with aluminium and titanium alloy nanoparticles in microchannel with partial slips and convective conditions. Int. J. Numer. Meth. Heat Fluid Flow 29(10), 3638–3658 (2019)

    Article  Google Scholar 

  30. Parvin, S.; Chamkha, A.J.: An analysis on free convection flow, heat transfer and entropy generation in an odd-shaped cavity filled with nanofluid. Int. Commun. Heat Mass Transf. 54, 8–17 (2014)

    Article  Google Scholar 

  31. Chamkha, A.J.: Unsteady laminar hydromagnetic fluid-particle flow and heat transfer in channels and circular pipes. Int. J. Heat Fluid Flow 21(6), 740–746 (2000)

    Article  Google Scholar 

  32. Chamkha, A.J.: Flow of two-immiscible fluids in porous and nonporous channels. J. Fluids Eng. 122(1), 117–124 (2000)

    Article  Google Scholar 

  33. Chamkha, A.J.: On laminar hydromagnetic mixed convection flow in a vertical channel with symmetric and asymmetric wall heating conditions. Int. J. Heat Mass Transf. 45(12), 2509–2525 (2002)

    Article  Google Scholar 

  34. Chamkha, A.J.; Grosan, T.; Pop, I.: Fully developed free convection of a micropolar fluid in a vertical channel. Int. Commun. Heat Mass Transf. 29(8), 1119–1127 (2002)

    Article  Google Scholar 

  35. Umavathi, J.C.; Chamkha, A.J.; Mateen, A.; Al-Mudhaf, A.: Unsteady two-fluid flow and heat transfer in a horizontal channel. Heat Mass Transf. 42, 81 (2005)

    Article  Google Scholar 

  36. Mohebbi, R.; Izadi, M.; Chamkha, A.J.: Heat source location and natural convection in a C-shaped enclosure saturated by a nanofluid. Phys. Fluids 29(12), 122009 (2017)

    Article  Google Scholar 

  37. Patankar, S.V.: Numerical heat transfer and fluid flow. Hemisphere, New York (1980)

    MATH  Google Scholar 

  38. Tao, W.Q.: Numerical heat transfer, 2nd edn. Xi’an Jiaotong University Press, Xi’an (2001)

    Google Scholar 

  39. Peng, X.F.; Peterson, G.P.: Convective heat transfer and flow friction for water flow in microchannel structures. Int. J. Heat Mass Transf. 39(12), 2599–2608 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Anwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, H.A., Anwar, M. & Malik, A. Numerical Investigations of Mini-Channel Heat Sink for Microprocessor Cooling: Effect of Slab Thickness. Arab J Sci Eng 45, 5169–5177 (2020). https://doi.org/10.1007/s13369-020-04370-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04370-4

Keywords

Navigation