Skip to main content
Log in

Impact of Instant Controlled Pressure Drop (DIC) Treatment on Chemical, Functional and Immunological Properties of Wheat Gluten

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Instant controlled pressure drop DIC technology is a thermo-mechanical treatment method that combines both mechanical and heat impacts of saturated steam pressure over a short period of time. This study aims to investigate the effect of DIC (100–165 °C for 20–60 s) on chemical, functional and immunological properties of wheat gluten powder using response surface methodology. Chemical properties were studied by Fourier transform infrared spectroscopy, thiol measurement and gel electrophoresis. Protein solubility, emulsifying capacity and foaming ability were evaluated as functional properties. Immunological properties were studied by indirect ELISA. After DIC treatment, wheat gluten became rigid which was due to a significant increase in β-structures. Significant loss of α-helixes and a significant increase in intermolecular β-sheet and the rearrangement of disulfide bonds indicated the denaturation of wheat gluten protein. However, the primary structure was not affected. DIC treatment altered the functional properties. The lowest protein solubility, emulsifying capacity and foaming ability were obtained at the highest DIC treatment conditions (165 °C, 60 s). The immunoreactivity of celiac IgA antigliadin antibodies of DIC wheat gluten depended on the individual patient characteristics. However, we note that the immunoreactivity has increased overall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Riba, A.; Bouras, N.; Mokrane, S.; Mathieu, F.; Lebrihi, A.; Sabaou, N.: Aspergillus section Flavi and aflatoxins in Algerian wheat and derived products. Food Chem. Toxicol. 48, 2772–2777 (2010). https://doi.org/10.1016/j.fct.2010.07.005

    Article  Google Scholar 

  2. Ribeiro, M.; Nunes, F.M.; Guedes, S.; Domingues, P.; Silva, A.M.; Carrillo, J.M.; Rodriguez-Quijano, M.; Branlard, G.; Igrejas, G.: Efficient chemo-enzymatic gluten detoxification: reducing toxic epitopes for celiac patients improving functional properties. Sci. Rep. 5, 1–17 (2015). https://doi.org/10.1038/srep18041

    Article  Google Scholar 

  3. Ortolan, F.; Steel, C.J.: Protein characteristics that affect the quality of vital wheat gluten to be used in baking: a review. Compr. Rev. Food Sci. Food Saf. 16, 369–381 (2017). https://doi.org/10.1111/1541-4337.12259

    Article  Google Scholar 

  4. Anderson, R.P.; Wieser, H.: Medical applications of gluten composition knowledge. In: Wrigley, C.W., Bekes, F., Bushuk, W. (eds.) Gliadin and Glutenin: The Unique Balance of Wheat Quality, pp. 387–409. AACC407 International, St Paul (2006)

    Chapter  Google Scholar 

  5. Di Sabatino, A.; Corazza, G.R.: Coeliac disease. Lancet 373, 1480–1493 (2009). https://doi.org/10.1016/S0140-6736(09)60254-3

    Article  Google Scholar 

  6. Farrell, R.J.; Kelly, C.P.: Celiac sprue. New Eng. J. Med. 346, 180–188 (2002). https://doi.org/10.1056/NEJMra010852

    Article  Google Scholar 

  7. Stamnaes, J.; Sollid, L.M.: Celiac disease: autoimmunity in response to food antigen. Semin Immunol 27, 343–352 (2015). https://doi.org/10.1016/j.smim.2015.11.001

    Article  Google Scholar 

  8. Green, P.H.; Cellier, C.: Celiac disease. New Eng. J. Med. 357, 1731–1743 (2007). https://doi.org/10.1056/NEJMra071600

    Article  Google Scholar 

  9. Ciacci, C.; Ciclitira, P.; Hadjivassiliou, M.; Kaukinen, K.; Ludvigsson, J.F.; McGough, N.; Swift, G.L.: The gluten-free diet and its current application in coeliac disease and dermatitis herpetiformis. United Eur. Gastroenterol. J. 3, 121–135 (2015). https://doi.org/10.1177/2050640614559263

    Article  Google Scholar 

  10. Ciacci, C.; Ciclitira, P.; Hadjivassiliou, M.; Kaukinen, K.; Ludvigsson, J.F.; McGough, N.; Swift, G.L.: The gluten-free diet and its current application in coeliac disease and dermatitis herpetiformis. United Eur. Gastroenterol. J. 3, 121–135 (2015). https://doi.org/10.1177/2050640614559263

    Article  Google Scholar 

  11. Panozzo, A.; Manzocco, L.; Lippe, G.; Nicoli, M.C.: Effect of pulsed light on structure and immunoreactivity of gluten. Food Chem. 194, 366–372 (2016). https://doi.org/10.1016/j.foodchem.2015.08.042

    Article  Google Scholar 

  12. Lamacchia, C.; Landriscina, L.; D’Agnello, P.: Changes in wheat kernel proteins induced by microwave treatment. Food Chem. 197, 634–640 (2016). https://doi.org/10.1016/j.foodchem.2015.11.016

    Article  Google Scholar 

  13. Allaf, K.; Vidal, P.: Feasibility Study of a New Process of Drying/Swelling by Instantaneous Decompression Towards Vacuum. Chemical Engineering Department University of Technology of Compiégne, Compiégne (1989)

    Google Scholar 

  14. Mounir, S.; Allaf, K.: DIC-assisted hot air drying of post-harvest paddy rice. In: Allaf, T., Allaf, K. (eds.) Instant Controlled Pressure Drop (DIC) in Food Processing, pp. 45–55. Springer, New York (2014)

    Chapter  Google Scholar 

  15. Guillamón, E.; Burbano, C.; Cuadrado, C.; Muzquiz, M.; Pedrosa, M.M.; Sánchez, M.; Cabanillas, B.; Crespo, J.F.; Rodriguez, J.; Haddad, J.; Allaf, K.: Effect of an instantaneous controlled pressure drop on in vitro allergenicity to lupins (Lupinus albus var Multolupa). Int. Arch. Allergy Immunol. 145, 9–14 (2008). https://doi.org/10.1159/000107461

    Article  Google Scholar 

  16. Cuadrado, C.; Cabanillas, B.; Pedrosa, M.M.; Muzquiz, M.; Haddad, J.; Allaf, K.; Rodriguez, J.; Crespo, J.-F.; Burbano, C.: Effect of instant controlled pressure drop on IgE antibody reactivity to peanut, lentil, chickpea and soybean proteins. Int. Arch. Allergy Immunol. 156, 397–404 (2011). https://doi.org/10.1159/000324443

    Article  Google Scholar 

  17. Takács, K.; Guillamon, E.; Pedrosa, M.M.; Cuadrado, C.; Burbano, C.; Muzquiz, M.; Haddad, J.; Allaf, K.; Maczó, A.; Polgár, M.; Gelencsér, E.: Study of the effect of instant controlled pressure drop (DIC) treatment on IgE-reactive legume-protein patterns by electrophoresis and immunoblot. Food Agric. Immunol. 25, 173–185 (2014). https://doi.org/10.1080/09540105.2012.759539

    Article  Google Scholar 

  18. Boughellout, H.; Choiset, Y.; Rabesona, H.; Chobert, J.M.; Haertle, T.; Mounir, S.; Allaf, K.; Zidoune, M.N.: Effect of instant controlled pressure drop (DIC) treatment on milk protein’s immunoreactivity. Food Agric. Immunol. 26, 71–81 (2015). https://doi.org/10.1080/09540105.2013.864607

    Article  Google Scholar 

  19. Wang, P.; Chen, H.; Mohanad, B.; Xu, L.; Ning, Y.; Xu, J.; Wu, F.; Yang, N.; Jin, Z.; Xu, X.: Effect of frozen storage on physico-chemistry of wheat gluten proteins: studies on gluten-, glutenin-and gliadin-rich fractions. Food Hydrocoll. 39, 187–194 (2014). https://doi.org/10.1016/j.foodhyd.2014.01.009

    Article  Google Scholar 

  20. Haddad, J.; Allaf, K.: A study of the impact of instantaneous controlled pressure drop on the trypsin inhibitors of soybean. J. Food Eng. 79, 353–357 (2007). https://doi.org/10.1016/j.jfoodeng.2006.01.066

    Article  Google Scholar 

  21. Jansens, K.J.; Lagrain, B.; Rombouts, I.; Brijs, K.; Smet, M.; Delcour, J.A.: Effect of temperature, time and wheat gluten moisture content on wheat gluten network formation during thermomolding. J. Cereal Sci. 54, 434–441 (2011). https://doi.org/10.1016/j.jcs.2011.08.008

    Article  Google Scholar 

  22. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)

    Article  Google Scholar 

  23. Hajós, G.; Gelencser, E.; Pusztai, A.; Grant, G.; Sakhri, M.; Bardocz, S.; Rowett, T.; Aberdeen, A.B.: Biological effects and survival of trypsin inhibitors and the agglutinin from soybean in the small intestine of the rat. J. Agric. Food Chem. 43, 165–170 (1995). https://doi.org/10.1021/jf00049a030

    Article  Google Scholar 

  24. Casella, M.L.; Whitaker, J.R.: Enzymatically and chemically modified zein for improvement of functional properties. J. Food Biochem. 14, 453–475 (1990). https://doi.org/10.1111/j.1745-4514.1990.tb00806.x

    Article  Google Scholar 

  25. Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  26. Yasumatsu, K.; Sawada, K.; Moritaka, S.; Misaki, M.; Toda, J.; Wada, T.; Ishii, K.: Whipping and emulsifying properties of soybean products. Agric. Biol. Chem. 36, 719–727 (1972). https://doi.org/10.1080/00021369.1972.10860321

    Article  Google Scholar 

  27. Caessens, P.W.; Visser, S.; Gruppen, H.; Voragen, A.G.: β-Lactoglobulin Hydrolysis. 1. Peptide Composition and Functional Properties of Hydrolysates Obtained by the Action of Plasmin, Trypsin, and Staphylococcus a ureus V8 Protease. J. Agric. Food Chem. 47, 2973–2979 (1999). https://doi.org/10.1021/jf981229p

    Article  Google Scholar 

  28. Cabrera-Chávez, F.; Rouzaud-Sández, O.; Sotelo-Cruz, N.; De La Barca, A.M.C.: Transglutaminase treatment of wheat and maize prolamins of bread increases the serum IgA reactivity of celiac disease patients. J. Agric. Food Chem. 56, 1387–1391 (2008). https://doi.org/10.1021/jf0724163

    Article  Google Scholar 

  29. Polak-Berecka, M.; Waśko, A.; Kordowska-Wiater, M.; Targoński, Z.; Kubik-Komar, A.: Application of response surface methodology to enhancement of biomass production by Lactobacillus rhamnosus E/N. Braz. J. Microbiol. 42, 1485–1494 (2011). https://doi.org/10.1590/S1517-83822011000400035

    Article  Google Scholar 

  30. Granato, D.; de Araújo Calado, V.M.: The use and importance of design of experiments (DOE) in process modelling in food science and technology. In: Mathematical and Statistical Methods in Food Science and Technology, pp. 1–18. Wiley, Hoboken (2014).

    Google Scholar 

  31. Nawrocka, A.; Miś, A.; Szymańska-Chargot, M.: Characteristics of relationships between structure of gluten proteins and dough rheology–influence of dietary fibers studied by FT-Raman spectroscopy. Food Biophys. 11, 81–90 (2016). https://doi.org/10.1007/s11483-015-9419-y

    Article  Google Scholar 

  32. Georget, D.M.R.; Belton, P.S.: Effects of temperature and water content on the secondary structure of wheat gluten studied by FTIR spectroscopy. Biomacromol 7, 269–475 (2006). https://doi.org/10.1021/bm050667j

    Article  Google Scholar 

  33. Yong, Y.H.; Yamaguchi, S.; Matsumura, Y.: Effects of enzymatic deamidation by protein–glutaminase on structure and functional properties of wheat gluten. J. Agric. Food Chem. 54, 6034–6040 (2006). https://doi.org/10.1021/jf060344u

    Article  Google Scholar 

  34. Guerrieri, N.; Enrica Alberti, V.E.R.A.; Cerletti, P.: Use of spectroscopic and fluorescence techniques to assess. Cereal Chem. 73, 368–374 (1996)

    Google Scholar 

  35. Veraverbeke, W.S.; Delcour, J.A.: Wheat protein composition and properties of wheat glutenin in relation to breadmaking functionality. Crit. Rev. Food Sci. Nutr. 42, 179–208 (2002). https://doi.org/10.1080/10408690290825510

    Article  Google Scholar 

  36. Qu, C.; Wang, H.; Liu, S.; Wang, F.; Liu, C.: Effects of microwave heating of wheat on its functional properties and accelerated storage. J. Food Sci. Technol. 54, 3699–3706 (2017). https://doi.org/10.1007/s13197-017-2834-y

    Article  Google Scholar 

  37. Tatham, A.S.; Shewry, P.R.: The conformation of wheat gluten proteins. The secondary structures and thermal stabilities of α-, β-, γ-and ω-gliadins. J. Cereal Sci. 3, 103–113 (1985). https://doi.org/10.1016/s0733-5210(85)80021-7

    Article  Google Scholar 

  38. Agyare, K.K.; Addo, K.; Xiong, Y.L.: Emulsifying and foaming properties of transglutaminase-treated wheat gluten hydrolysate as influenced by pH, temperature and salt. Food Hydrocoll. 23, 72–81 (2009). https://doi.org/10.1016/j.foodhyd.2007.11.012

    Article  Google Scholar 

  39. Zayas, J.F.: Solubility of Proteins, Functionality of Proteins in Food, 1st edn, pp. 6–75. Berlin, Springer (1997)

    Book  Google Scholar 

  40. Hall, G.M.: Methods of testing protein functionality, 1st edn. London Science and Business Media, London (2006)

    Google Scholar 

  41. Han, Z.; Cai, M.J.; Cheng, J.H.; Sun, D.W.: Effects of electric fields and electromagnetic wave on food protein structure and functionality: a review. Trends Food Sci. Technol. 75, 1–9 (2018). https://doi.org/10.1016/j.tifs.2018.02.017

    Article  Google Scholar 

  42. Morel, M.H.; Redl, A.; Guilbert, S.: Mechanism of heat and shear mediated aggregation of wheat gluten protein upon mixing. Biomacromol 3, 488–497 (2002). https://doi.org/10.1021/bm015639p

    Article  Google Scholar 

  43. Ciccocioppo, R.; Di Sabatino, A.; Corazza, G.R.: The immune recognition of gluten in coeliac disease. Clin. Exp. Immunol. 140, 408–416 (2005). https://doi.org/10.1111/j.1365-2249.2005.02783.x

    Article  Google Scholar 

  44. Di Sabatino, A.; Corazza, G.R.: Coeliac disease. Lancet 373, 1480–1493 (2009). https://doi.org/10.1016/S0140-6736(09)60254-3

    Article  Google Scholar 

  45. Scherf, K.A.; Koehler, P.; Wieser, H.: Gluten and wheat sensitivities–an overview. J. Cereal Sci. 67, 2–11 (2016). https://doi.org/10.1016/j.jcs.2015.07.008

    Article  Google Scholar 

  46. Leszczynska, J.; Lacka, A.; Szemraj, J.; Lukamowicz, J.; Zegota, H.: The effect of microwave treatment on the immunoreactivity of gliadin and wheat flour. Eur. Food Res. Technol. 217, 387–391 (2003). https://doi.org/10.1007/s00217-003-0765-5

    Article  Google Scholar 

  47. Salentijn, E.M.; Mitea, D.C.; Goryunova, S.V.; van der Meer, I.M.; Padioleau, I.; Gilissen, L.J.; Koning, F.; Smulders, M.J.: Celiac disease T-cell epitopes from gamma-gliadins: immunoreactivity depends on the genome of origin, transcript frequency, and flanking protein variation. BMC Genom. 13, 277 (2012). https://doi.org/10.1186/1471-2164-13-277

    Article  Google Scholar 

  48. Henderson, K.N.; Tey-Din, J.A.; Reid, H.H.; Chen, Z.; Borg, N.A.; Beissbarth, T.; Tahtham, A.; Mannering, S.I.; Purcell, A.W.; Dudek, N.L.; van Heel, D.; McCluskey, J.; Rossjohn, J.; Anderson, R.: A structural and immunological basis for the role of human leukocyte antigen DQ8 in celiac disease. Immunity 27, 23–34 (2007). https://doi.org/10.1016/j.immuni.2007.05.015

    Article  Google Scholar 

  49. Gruber, P.; Vieths, S.; Wangorsch, A.; Nerkamp, J.; Hofmann, T.: Maillard reaction and enzymatic browning affect the allergenicity of Pru av 1, the major allergen from cherry (Prunus avium). J. Agric. Food Chem. 52, 4002–4007 (2004). https://doi.org/10.1021/jf035458+

    Article  Google Scholar 

  50. Taheri-Kafrani, A.; Gaudin, J.-C.; Rabesona, H.; Nioi, C.; Agarwal, D.; Drouet, M.; Chobert, J.-M.; Bordbar, A.-K.; Haertle, T.: Effects of heating and glycation of beta-lactoglobulin on its recognition by IgE of sera from cow milk allergy patients. J. Agric. Food Chem. 57, 4974–4982 (2009). https://doi.org/10.1021/jf804038t

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Mariana Fernandes from the Department of Chemistry, Trás-os-Montes e Alto Douro University (UTAD), Vila Real, Portugal, for her help in FTIR analysis and Prof. Ana Maria Calderon de la Barca from Research Center for Food and Development, A.C., Department of Nutrition, Hermosillo, Mexico, for her advices.

Funding

This work was supported by the INATAA under Grant [D00L01N250120180003].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Allaf.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahroug, H., Benatallah, L., Takács, K. et al. Impact of Instant Controlled Pressure Drop (DIC) Treatment on Chemical, Functional and Immunological Properties of Wheat Gluten. Arab J Sci Eng 45, 575–586 (2020). https://doi.org/10.1007/s13369-019-04261-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04261-3

Keywords

Navigation