Skip to main content
Log in

Mass Transfer Correlation for Tubular Membrane-Based Liquid Desiccant Air-Conditioning System

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, a tubular membrane-based liquid desiccant air-conditioning system was numerically simulated to obtain mass transfer correlation. The design parameters for the membrane-based liquid desiccant system (Re numbers and aspect ratio, L/D) were also optimized using the numerically obtained results. The mass transfer correlation was developed as a function of Reynolds numbers, Schmidt numbers and aspect ratio which indicates a ratio of the length to the diameter of the membrane tube. The effect of the aspect ratio and airflow velocity on the efficiency of the membrane-based liquid desiccant system was also investigated. COMSOL Multiphysics modules of this study were validated with the literature results. The maximum efficiency was obtained as 50% with an aspect ratio of 40 at low Re number of 50.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A, B, C :

Antoine equation constants

b :

Equation 9a, 9b, 9c

c :

Concentration (mol m−3)

d e :

Equivalent diameter (m)

D :

Membrane diameter (m)

D AB :

Water vapor–air diffusivity (m2 s−1)

D m :

Water vapor–membrane diffusivity (m2 s−1)

D s :

Water vapor–desiccant solution diffusivity (m2 s−1)

k :

Mass transfer coefficient (m s−1)

L :

Fibre length (m)

m :

Mass (kg)

M :

Equation 9a, 9b, 9c

M A :

Molar mass of water (kg mol−1)

N :

Molar flux (mol m−1 s−1)

P :

Pressure (kPa)

r :

Radial distance (m)

R :

Radius (m)

R u :

Universal gas constant (Pa m3 mol−1 K−1)

Re:

Reynolds number

S :

Cross-sectional area (m2)

Sc:

Schmidt number

Sh:

Sherwood number

t :

Time (s)

T :

Absolute temperature (K)

u :

Velocity (m s−1)

z :

Longitudinal distance (m)

ϕ :

Relative humidity

δ :

Membrane thickness (m)

α :

Equation A1a

β :

Equation A1a

κ :

Equation A1a

π :

Relative pressure

ξ :

Mass fraction of solute (kg kg−1)

ρ :

Density (kg m−3)

θ :

Reduced temperature

μ :

Dynamic viscosity (Pa s)

η :

Efficiency

1,2,3,…:

State numbers

a:

Air

A:

Equation 3a

c:

At the critical point

e:

Equivalent

i:

Inner, inlet, any state

LiCl:

Lithium chloride

m:

Membrane

o:

Outer, outlet

s:

Solution

v:

Vapor

w:

Water

*:

Equation 3b

sat:

Saturated

References

  1. Gediz Ilis, G.; Demir, H.: Influence of bed thickness and particle size on performance of microwave regenerated adsorption heat pump. Int. J. Heat Mass Transf. 123, 16–24 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.063

    Article  Google Scholar 

  2. Ahmed, Y.S.; Gandhidasan, P.; Al-Farayedhi, A.A.: Thermodynamic analysis of liquid desiccants. Sol. Energy 62, 11–18 (1998). https://doi.org/10.1016/S0038-092X(97)00087-X

    Article  Google Scholar 

  3. Kavasoğullari, B.; Cihan, E.; Demir, H.: Valorization of polycarbonate board as packing material for open CaCl2-water desiccant system. Environ. Prog. Sustain. Energy 37, 1727–1735 (2018). https://doi.org/10.1002/ep.12826

    Article  Google Scholar 

  4. Cihan, E.; Kavasoğulları, B.; Demir, H.: Enhancement of performance of open liquid desiccant system with surface additive. Renew. Energy 114, 1101–1112 (2017). https://doi.org/10.1016/j.renene.2017.08.002

    Article  Google Scholar 

  5. Isetti, C.; Nannei, E.; Magrini, A.: On the application of a membrane air-liquid contactor for air dehumidification. Energy Build. 25, 185–193 (1997). https://doi.org/10.1016/S0378-7788(96)00993-0

    Article  Google Scholar 

  6. Huang, S.M.; Qin, F.G.F.; Yang, M.; Yang, X.; Zhong, W.F.: Heat and mass transfer deteriorations in an elliptical hollow fiber membrane tube bank for liquid desiccant air dehumidification. Appl. Therm. Eng. 57, 90–98 (2013). https://doi.org/10.1016/j.applthermaleng.2013.04.004

    Article  Google Scholar 

  7. Huang, S.M.; Zhang, L.Z.; Pei, L.X.: Transport phenomena in a cross-flow hollow fibre membrane bundle used for liquid desiccant air dehumidification. Indoor Built Environ. 22, 559–574 (2013). https://doi.org/10.1177/1420326X12452881

    Article  Google Scholar 

  8. Huang, S.M.; Yang, M.: Heat and mass transfer enhancement in a cross-flow elliptical hollow fiber membrane contactor used for liquid desiccant air dehumidification. J. Memb. Sci. 449, 184–192 (2014). https://doi.org/10.1016/j.memsci.2013.08.033

    Article  Google Scholar 

  9. Zhang, L.Z.; Huang, S.M.; Pei, L.X.: Conjugate heat and mass transfer in a cross-flow hollow fiber membrane contactor for liquid desiccant air dehumidification. Int. J. Heat Mass Transf. 55, 8061–8072 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.041

    Article  Google Scholar 

  10. Abdel-Salam, A.H.; Ge, G.; Simonson, C.J.: Performance analysis of a membrane liquid desiccant air-conditioning system. Energy Build. 62, 559–569 (2013). https://doi.org/10.1016/j.enbuild.2013.03.028

    Article  Google Scholar 

  11. Abdel-Salam, A.H.; Ge, G.; Simonson, C.J.: Thermo-economic performance of a solar membrane liquid desiccant air conditioning system. Sol. Energy 102, 56–73 (2014). https://doi.org/10.1016/j.solener.2013.12.036

    Article  Google Scholar 

  12. Ouyang, Y.W.; Zhang, L.Z.: Conjugate heat and mass transfer in a skewed flow hollow fiber membrane bank used for liquid desiccant air dehumidification. Int. J. Heat Mass Transf. 93, 23–40 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.009

    Article  Google Scholar 

  13. Keniar, K.; Ghali, K.; Ghaddar, N.: Study of solar regenerated membrane desiccant system to control humidity and decrease energy consumption in office spaces. Appl. Energy 138, 121–132 (2015). https://doi.org/10.1016/j.apenergy.2014.10.071

    Article  Google Scholar 

  14. Yao, Y.; Yu, Y.; Zhu, Z.: Experimental investigations on surface vapor pressure models for LiCl-CaCl2 desiccant solutions. Sol. Energy 12, 1–13 (2016). https://doi.org/10.1016/j.solener.2015.12.046

    Article  Google Scholar 

  15. Conde, P.M.: Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design. Int. J. Therm. Sci. 43, 367–382 (2004). https://doi.org/10.1016/j.ijthermalsci.2003.09.003

    Article  Google Scholar 

  16. Huang, S.M.; Zhong, Z.; Yang, M.: Conjugate heat and mass transfer in an internally-cooled membrane-based liquid desiccant dehumidifier (IMLDD). J. Memb. Sci. 508, 73–83 (2016). https://doi.org/10.1016/j.memsci.2016.02.026

    Article  Google Scholar 

  17. Geankoplis, C.J.: Transport processes and separation process principles (includes unit operation), 4th edn. Prentice Hall International Inc, Upper Saddle River (2003)

    Google Scholar 

  18. Zhang, L.Z.: Coupled heat and mass transfer in an application-scale cross-flow hollow fiber membrane module for air humidification. Int. J. Heat Mass Transf. 55, 5861–5869 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.083

    Article  Google Scholar 

  19. Sabek, S.; Ben Nasr, K.; Tiss, F.; Chouikh, R.; Guizani, A.: Performance investigation of desiccant liquid air membrane energy exchanger: air and lithium chloride effects. Int. J. Refrig 80, 145–157 (2017). https://doi.org/10.1016/j.ijrefrig.2017.04.027

    Article  Google Scholar 

  20. Bai, H.; Zhu, J.; Chen, Z.; Ma, L.; Wang, R.; Li, T.: Performance testing of a cross-flow membrane-based liquid desiccant dehumidification system. Appl. Therm. Eng. 119, 119–131 (2017). https://doi.org/10.1016/j.applthermaleng.2017.03.058

    Article  Google Scholar 

  21. Abdel-Salam, A.H.; Simonson, C.J.: Capacity matching in heat-pump membrane liquid desiccant air conditioning systems. Int. J. Refrig 48, 166–177 (2014). https://doi.org/10.1016/j.ijrefrig.2014.09.004

    Article  Google Scholar 

  22. Chen, Z.; Zhu, J.; Bai, H.; Yan, Y.; Zhang, L.: Experimental study of a membrane-based dehumidification cooling system. Appl. Therm. Eng. 115, 1315–1321 (2017). https://doi.org/10.1016/j.applthermaleng.2016.10.153

    Article  Google Scholar 

  23. Chen, Z.; Zhu, J.; Bai, H.: Performance assessment of a membrane liquid desiccant dehumidification cooling system based on experimental investigations. Energy Build. 139, 665–679 (2017). https://doi.org/10.1016/j.enbuild.2017.01.046

    Article  Google Scholar 

  24. Das, R.S.; Jain, S.: Experimental performance of indirect air-liquid membrane contactors for liquid desiccant cooling systems. Energy 57, 319–325 (2013). https://doi.org/10.1016/j.energy.2013.05.013

    Article  Google Scholar 

  25. Zhang, N.; Zhang, L.Z.; Xu, J.C.: A heat pump driven and hollow fiber membrane-based liquid desiccant air dehumidification system: a transient performance study. Int. J. Refrig 67, 143–156 (2016). https://doi.org/10.1016/j.ijrefrig.2016.01.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Demir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

Vapor pressure of LiCl solution, at a specific temperature and concentration, is given by Conde [15] as shown in Eq. A1.

$$ \frac{{P_{\text{s}} }}{{P_{\text{w}}^{\text{sat}} }} = \left( { + \frac{T}{647.096}} \right) $$
(A1a)
$$ = 2 - \left[ {1 + \left( {\frac{\xi }{{\pi_{0} }}} \right)^{{\pi_{1} }} } \right]^{{\pi_{2} }} $$
(A1b)
$$ = \left[ {1 + \left( {\frac{\xi }{{\pi_{3} }}} \right)^{{\pi_{4} }} } \right]^{{\pi_{5} }} - 1 $$
(A1c)
$$ = 1 - \left[ {1 + \left( {\frac{\xi }{{\pi_{6} }}} \right)^{{\pi_{7} }} } \right]^{{\pi_{8} }} - \pi_{9} e^{{\frac{{ - (\xi - 0.1)^{2} }}{0.005}}} $$
(A1d)
$$ \xi = \frac{{m_{\text{LiCl}} }}{{m_{\text{LiCl}} + m_{\text{w}} + \Delta m_{\text{v}} }} $$
(A1e)

The vapor pressure of LiCl–water solution was calculated by the saturation pressure of pure water. The constants π0, π1, π2, π3, π4, π5, π6, π7, π8 and π9 are given in Table 3.

Table 3 Constants for vapor pressure of LiCl–water desiccant solution (Conde 2012)

The density of LiCl–water desiccant solution varied according to the concentration of LiCl in solution. Thus, the density of LiCl–water solution depends on temperature and concentration of LiCl in solution and was defined by the density of pure water. Conde [15] was modeled density of LiCl–water solution as the following equations. The constants Bi and ρi are listed in Table 4.

$$ \rho_{\text{s}} = \rho_{\text{w}} \mathop \sum \limits_{i = 0}^{3} \rho_{i} \left( {\frac{\xi }{1 - \xi }} \right)^{i} $$
(A2a)
$$ \rho_{\text{w}} = 322\left( {1 + B_{0} \theta^{{\frac{1}{3}}} + B_{1} \theta^{{\frac{2}{3}}} + B_{2} \theta^{{\frac{5}{3}}} + B_{3} \theta^{{\frac{16}{3}}} + B_{4} \theta^{{\frac{43}{3}}} + B_{5} \theta^{{\frac{110}{3}}} } \right) $$
(A2b)
$$ \theta = 1 - T /T_{\text{c}} $$
(A2c)
Table 4 Constants for density of LiCl–water desiccant solution and pure water (Conde 2012)

The dynamic viscosity of LiCl–water desiccant solution was calculated by Eq. (A3). Table 5 lists the constants of dynamic viscosity of LiCl–water desiccant solution.

$$ \mu_{\text{s}} = \mu_{\text{w}} e^{{\mu_{1} \zeta^{3.6} + \mu_{2} \zeta^{{}} + \mu_{3} \frac{\zeta }{\theta } + \mu_{4} \zeta^{2} }} $$
(A3a)
$$ \zeta = \frac{\xi }{{\left( {1 - \xi } \right)^{{\frac{1}{0.6}}} }} $$
(A3b)
$$ \mu_{\text{w}} = 1.787 \times 10^{ - 6} (1.0261862 + 12481.702\theta^{0.02} - 19510.923\theta^{0.04} + 7065.286\theta^{0.08} - 395.561\theta^{2.85} + 143922.996\theta^{8} ) $$
(A3c)
Table 5 Constants for viscosity of LiCl–water desiccant solution (Conde 2012)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cihan, E., Kavasoğulları, B. & Demir, H. Mass Transfer Correlation for Tubular Membrane-Based Liquid Desiccant Air-Conditioning System. Arab J Sci Eng 45, 519–529 (2020). https://doi.org/10.1007/s13369-019-04242-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04242-6

Keywords

Navigation