Skip to main content
Log in

An Integrated Word Embedding-Based Dual-Task Learning Method for Sentiment Analysis

  • Research Article - Special Issue - Intelligent Computing And Interdisciplinary Applications
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Sentiment analysis aimed to automate the task of discriminating the sentiment tendency of a textual review, which expresses a simple sentiment as positive, negative, or neutral. In general, the basic sentiment analysis solution used for feature extraction is the word embedding technique, which only focuses on the contextual or global semantic information and ignores the sentiment polarity of text. Thus, the word embedding technique leads to biased analysis results, especially for some words that have the same semantic context but an opposite sentiment. In this paper, we propose an integrated sentiment embedding method to combine context and sentiment information using a dual-task learning algorithm to perform sentiment analysis. First, we propose three sentiment language models by encoding the sentiment information of texts into word embedding based on three existing semantic models, namely, continuous bag-of-words, prediction, and log-bilinear. Next, based on semantic language models and the proposed sentiment language models, we propose a dual-task learning algorithm to generate hybrid word embedding named integrated sentiment embedding, in which the joint learning method and parallel learning method are applied to jointly process tasks. Experiments on sentence-level and document-level sentiment classification tasks demonstrate that the proposed integrated sentiment embedding has better classification performances compared with basic word embedding methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://alt.qcri.org/semeval2014/task9/index.php?id=data-and-tools.

  2. http://www.cs.cornell.edu/people/pabo/movie-review-data/.

  3. http://ai.stanford.edu/~amaas/data/sentiment/.

References

  1. Berger, A.L.; Pietra, V.J.D.; Pietra, S.A.D.: A maximum entropy approach to natural language processing. Comput. Linguist. 22(1), 39–71 (1996)

    Google Scholar 

  2. Collobert, R.; Weston, J.; Bottou, L.; et al.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

    MATH  Google Scholar 

  3. Chowdhury, G.: Natural language processing. Annu. Rev. Inf. Sci. Technol. 37, 51–89 (2003)

    Article  Google Scholar 

  4. Mikolov, T.; Chen, K.; Corrado, G.; et al.: Efficient estimation of word representations in vector space (2013). arXiv preprint arXiv:1301.3781

  5. Guthrie, D.; Allison, B.; Liu, W.; et al.: A closer look at skip-gram modelling. In: Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC-2006), pp. 1–4 (2006)

  6. Mnih, A.; Hinton, G.: Three new graphical models for statistical language modelling. In: Proceedings of the 24th International Conference on Machine Learning, pp. 641–648 (2007)

  7. Mikolov, T.; Sutskever, I.; Chen, K.; et al.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

  8. Kühnen, U.; Hannover, B.; Schubert, B.: The semantic-procedural interface model of the self: the role of self-knowledge for context-dependent versus context-independent modes of thinking. J. Pers. Soc. Psychol. 80(3), 397 (2001)

    Article  Google Scholar 

  9. Chen, H.; Finin, T.; Joshi, A.: Semantic web in the context broker architecture, UMBC Faculty Collection (2004)

  10. Maton, K.: Making semantic waves: a key to cumulative knowledge-building. Linguist. Educ. 24(1), 8–22 (2013)

    Article  Google Scholar 

  11. Bellegarda, J.R.: Exploiting latent semantic information in statistical language modeling. Proc. IEEE 88(8), 1279–1296 (2000)

    Article  Google Scholar 

  12. Pennington, J.; Socher, R.; Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

  13. Bellegarda, J.R.: Exploiting both local and global constraints for multi-span statistical language modeling. ICASSP 2, 677–680 (1998)

    Google Scholar 

  14. Zhai, F.; Potdar, S.; Xiang, B.; et al.: Neural models for sequence chunking. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

  15. Bonhage, C.E.; Meyer, L.; Gruber, T.; et al.: Oscillatory EEG dynamics underlying automatic chunking during sentence processing. Neuroimage 66, 11–21 (2015)

    Google Scholar 

  16. Carneiro, H.C.C.; França, F.M.G.; Lima, P.M.V.: Multilingual part-of-speech tagging with weightless neural networks. Neural Netw. 152, 647–657 (2017)

    Google Scholar 

  17. Jamatia, A.; Gambäck, B.; Das, A.: Part-of-speech tagging for code-mixed English-Hindi twitter and facebook chat messages. In: Proceedings of the International Conference Recent Advances in Natural Language Processing, pp. 239–248 (2015)

  18. Lample, G.; Ballesteros, M.; Subramanian, S.; et al.: Neural architectures for named entity recognition (2016). arXiv preprint arXiv:1603.01360

  19. Neelakantan, A.; Collins, M.: Learning dictionaries for named entity recognition using minimal supervision (2015). arXiv preprint arXiv:1504.06650

  20. Cambria, E.: Affective computing and sentiment analysis. IEEE Intell. Syst. 31(2), 102–107 (2016)

    Article  Google Scholar 

  21. Tang, D.; Wei, F.; Qin, B.; et al.: Sentiment embeddings with applications to sentiment analysis. IEEE Trans. Knowl. Data Eng. 28(2), 496–509 (2016)

    Article  Google Scholar 

  22. Liu, K.L.; Li, W.J.; Guo, M.: Emoticon smoothed language models for twitter sentiment analysis. Aaai 12, 22–26 (2012)

    Google Scholar 

  23. Maas, A.L.; Daly, R.E.; Pham, P.T.; et al.: Learning word vectors for sentiment analysis. In: Meeting of the Association for Computational Linguistics. Human Language Technologies. Association for Computational Linguistics (2011)

  24. Tang, D.; Wei, F.; Yang, N.; et al.: Learning sentiment-specific word embedding for twitter sentiment classification. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, vol. 1, pp. 1555–1565 (2014)

  25. Tang, D.; Wei, F.; Qin, B.; et al.: Coooolll: a deep learning system for twitter sentiment classification. In: Proceedings of the 8th international workshop on semantic evaluation (SemEval 2014), pp. 208–212 (2014)

  26. Pang, B.; Lee, L.: A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp. 271–279. Association for Computational Linguistics (2004)

  27. Lai, S.; Liu, K.; He, S.; et al.: How to generate a good word embedding. IEEE Intell. Syst. 31(6), 5–14 (2016)

    Article  Google Scholar 

  28. Mnih, A.; Hinton, G.E.: A scalable hierarchical distributed language model. In: Advances in Neural Information Processing Systems, pp. 1081–1088 (2009)

  29. Mikolov, T.; Kombrink, S.; Burget, L.; et al.: Extensions of recurrent neural network language model. In: Acoustics, Speech and Signal Processing (ICASSP), pp. 5528–5531 (2011)

  30. Mikolov, T.; Zweig, G.: Context dependent recurrent neural network language model. In: 2012 IEEE Spoken Language Technology Workshop (SLT) pp. 234–239 (2012)

  31. Bengio, Y.; Ducharme, R.; Vincent, P.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003)

    MATH  Google Scholar 

  32. Collobert, R.; Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning (2008)

  33. Young, T.; Hazarika, D.; Poria, S.; et al.: Recent trends in deep learning based natural language processing. IEEE Comput. Intell. Mag. 13(3), 55–75 (2018)

    Article  Google Scholar 

  34. Kumar, A.; Irsoy, O.; Ondruska, P.; et al.: Ask me anything: dynamic memory networks for natural language processing. In: International Conference on Machine Learning, pp. 1378–1387 (2016)

  35. Kombrink, S.; Mikolov, T.; Karafiät M.; et al.: Recurrent neural network based language modeling in meeting recognition. In: Twelfth Annual Conference of the International Speech Communication Association (2011)

  36. Mikolov, T.; Karafiät, M.; Burget, L.; et al.: Recurrent neural network based language model. In: Eleventh Annual Conference of the International Speech Communication Association (2010)

  37. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J.: Efficient estimation of word representations in vector space (2013). arXiv preprint arXiv:1301.3781

  38. Morin, F.; Bengio, Y.: Hierarchical probabilistic neural network language model. Aistats 5, 246–252 (2005)

    Google Scholar 

  39. Goldberg, Y.; Levy, O.: word2vec explained: deriving mikolov et al.’s negative-sampling word-embedding method [Online] (2014). arXiv:1402.3722

  40. Hinton, G.E.; Osindero, S.; Teh, Y.W.: A fast learning algorithm for deep belief networks. Neural Comput. 18, 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  41. Ma, Y.; Peng, H.; Cambria, E.: Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM[C]. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

  42. Al-Rfou, R.; Choe, D.; Constant, N.; et al.: Character-level language modeling with deeper self-attention[C]. Proc. AAAI Conf. Artif. Intell. 33, 3159–3166 (2019)

    Google Scholar 

  43. Devlin, J.; Chang, M.W.; Lee, K.; et al.: Bert: pre-training of deep bidirectional transformers for language understanding[J] (2018). arXiv preprint arXiv:1810.04805

  44. Bespalov, D.; Bai, B.; Qi, Y.; Shokoufandeh, A.: Sentiment classification based on supervised latent n-gram analysis. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 375–382 (2011)

  45. Vilares, D.; Alonso, M.A.; et al.: Sentiment analysis on monolingual, multilingual and code-switching twitter corpora[C]. In: Proceedings of the 6th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 2–8 (2015)

  46. Abdulla, N.A.; Ahmed, N.A.; Shehab, M.A.; et al.: Arabic sentiment analysis: Lexicon-based and corpus-based[C]//2013. In: IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies, pp. 1–6 (2013)

  47. Steiner-Correa, F.; Viedma-del-Jesus, M.I.; Lopez-Herrera, A.G.: A survey of multilingual human-tagged short message datasets for sentiment analysis tasks. Soft. Comput. 22, 8227–8242 (2018)

    Article  Google Scholar 

  48. Al-Smadi, M.; Talafha, B.; Al-Ayyoub, M.; et al.: Using long short-term memory deep neural networks for aspect-based sentiment analysis of Arabic reviews. Int. J. Mach. Learn. Cybernet. 10, 2163–2175 (2018)

    Article  Google Scholar 

  49. Ranjan, R.; Patel, V.M.; Chellappa, R.: Hyperface: a deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Trans. Pattern Anal. Mach. Intell. 41, 121–135 (2019)

    Article  Google Scholar 

  50. Zhang, Z.; Luo, P.; Loy, C.C.; et al.: Facial landmark detection by deep multi-task learning. In: European Conference on Computer Vision, pp. 94–108 (2014)

  51. Liu, W.; et al.: Multi-task deep visual-semantic embedding for video thumbnail selection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

  52. Argyriou, A.; Evgeniou, T.; Pontil, M.: Multi-task feature learning. In: Advances in Neural Information Processing Systems, pp. 41–48 (2007)

  53. Dahl, G.; Yu, D.; Deng, L.; Acero, A.: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 20(1), 30–42 (2012)

    Article  Google Scholar 

  54. Agostinelli, F.; Hoffman, M.; Sadowski, P.; Baldi, P.: Learning activation functions to improve deep neural networks [Online] (2014). arXiv:1412.6830

  55. Zhang, B.; Liu, C.H.; Tang, J.; et al.: Learning-based energy-efficient data collection by unmanned vehicles in smart cities. IEEE Trans. Ind. Inf. 14(4), 1666–1676 (2018)

    Article  Google Scholar 

  56. Vogl, T.P.; Mangis, J.K.; Rigler, A.K.; et al.: Accelerating the convergence of the back-propagation method. Biol. Cybern. 59, 257–263 (1988)

    Article  Google Scholar 

  57. Ng, A.Y.: Feature selection, L 1 vs. L 2 regularization, and rotational invariance. In: Proceedings of the Twenty-first International Conference on Machine Learning, pp. 78–98 (2004)

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (2019YJ S006) and the National Key Research and Development of China (2016YFB0800900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Liu, Y. & Peng, SL. An Integrated Word Embedding-Based Dual-Task Learning Method for Sentiment Analysis. Arab J Sci Eng 45, 2571–2586 (2020). https://doi.org/10.1007/s13369-019-04241-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04241-7

Keywords

Navigation