Skip to main content
Log in

Effects of Cinnamaldehyde as an Eco-Friendly Corrosion Inhibitor on Mild Steel in Aerated NaCl Solutions

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

A Correction to this article was published on 14 February 2020

This article has been updated

Abstract

This article investigates the impact of cinnamaldehyde as an eco-friendly inhibitor in mitigating corrosion detriment on mild steel in aerated NaCl (3% w/w) using weight loss and potentiodynamic polarization methods. The results indicate moderate inhibition efficiency of cinnamaldehyde reaching around 70% at an optimum level of 0.5 g/L or 500 ppm by establishing an adsorption film on metal surface. Adsorption of the cinnamaldehyde seemed to adhere to the Langmuir isotherm. The corrosion rate decreased with cinnamaldehyde dose up to the optimum level while increased slowly with the medium temperature. The activation energy (Ea) achieved with cinnamaldehyde was found to be lower than that of without cinnamaldehyde. The polarization curves revealed that the inhibitor performs as a mixed-type inhibitor since it diminishes both anodic and cathodic current densities. The calculated inhibition efficiencies using both corrosion monitoring techniques were found to be in good agreement. Additionally, the mild steel surfaces (inhibited and uninhibited) were examined by using SEM–EDX analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 14 February 2020

    In the original publication of this article the fourth author���s name was incorrectly published.

References

  1. DNV GL – Report No. OAPUS310GKOCH (PP110272)-1, Rev. 3 – www.dnvgl.com Page A-2 December 23, 2015 (http://impact.nace.org/documents/appendix-a.pdf) (n.d.)

  2. Tian, W.; Du, N.; Li, S.; Chen, S.; Wu, Q.: Metastable pitting corrosion of 304 stainless steel in 3.5% NaCl solution. Corros. Sci. 85, 372–379 (2014). https://doi.org/10.1016/j.corsci.2014.04.033

    Article  Google Scholar 

  3. Zhong, P.; Sun, M.; Xiao, K.; Hu, Y.B.; Li, X.G.; Dong, C.F.: Effects of solution pH and Cl − on electrochemical behaviour of an Aermet100 ultra-high strength steel in acidic environments. Corros. Sci. 53, 4159–4165 (2011). https://doi.org/10.1016/j.corsci.2011.08.024

    Article  Google Scholar 

  4. Ghods, P.; Isgor, O.B.; McRae, G.A.; Cu, G.P.: Electrochemical investigation of chloride-induced depassivation of black steel rebar under simulated service conditions. Corros. Sci. 52, 1649–1659 (2010)

    Article  Google Scholar 

  5. Cicolin, D.; Trueba, M.; Trasatti, S.P.: Effect of chloride concentration, pH and dissolved oxygen, on the repassivation of 6082-T6 Al alloy. Electrochim. Acta 124, 27–35 (2014). https://doi.org/10.1016/j.electacta.2013.09.003

    Article  Google Scholar 

  6. Zaid, B.; Saidi, D.; Benzaid, A.; Hadji, S.: Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy. Corros. Sci. 50, 1841–1847 (2008). https://doi.org/10.1016/j.corsci.2008.03.006

    Article  Google Scholar 

  7. Mohammed, M.S.H.S.; Raghavan, R.S.; Knight, G.M.S.; Murugesan, V.: Macrocell corrosion studies of coated rebars. Arab. J. Sci. Eng. 39, 3535–3543 (2014). https://doi.org/10.1007/s13369-014-1006-x

    Article  Google Scholar 

  8. Cao, C.; Cheung, M.M.S.: Non-uniform rust expansion for chloride-induced pitting corrosion in RC structures. Constr. Build. Mater. 51, 75–81 (2014). https://doi.org/10.1016/j.conbuildmat.2013.10.042

    Article  Google Scholar 

  9. Raja, V.S.; Padekar, B.S.: Role of chlorides on pitting and hydrogen embrittlement of Mg-Mn wrought alloy. Corros. Sci. 75, 176–183 (2013). https://doi.org/10.1016/j.corsci.2013.05.030

    Article  Google Scholar 

  10. Abd El-Haleem, S.M.; Abd El-Wanees, S.: Chloride induced pitting corrosion of nickel in alkaline solutions and its inhibition by organic amines. Mater. Chem. Phys. 128, 418–426 (2011). https://doi.org/10.1016/j.matchemphys.2011.03.023

    Article  Google Scholar 

  11. Klapper, H.S.; Goellner, J.; Burkert, A.; Heyn, A.: Environmental factors affecting pitting corrosion of type 304 stainless steel investigated by electrochemical noise measurements under potentiostatic control. Corros. Sci. 75, 239–247 (2013). https://doi.org/10.1016/j.corsci.2013.06.005

    Article  Google Scholar 

  12. Goyal, A.; Pouya, H.S.; Ganjian, E.; Claisse, P.: A review of corrosion and protection of steel in concrete. Arab. J. Sci. Eng. 43, 5035–5055 (2018). https://doi.org/10.1007/s13369-018-3303-2

    Article  Google Scholar 

  13. Alhumade, H.; Abdala, A.; Yu, A.; Elkamel, A.; Simon, L.: Corrosion inhibition of copper in sodium chloride solution using polyetherimide/graphene composites. Can. J. Chem. Eng. 94, 896–904 (2016). https://doi.org/10.1002/cjce.22439

    Article  Google Scholar 

  14. Duan, Z.; Sun, R.; Liu, R.; Zhu, C.: Accurate thermodynamic model for the calculation of H2S solubility in pure water and brines. Energy Fuels 21, 2056–2065 (2007). https://doi.org/10.1021/ef070040p

    Article  Google Scholar 

  15. Duan, Z.; Sun, R.: An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem. Geol. 193, 257–271 (2003)

    Article  Google Scholar 

  16. Ating, E.I.; Umoren, S.A.; Udousoro, I.I.; Ebenso, E.E.; Udoh, A.P.: Leaves extract of ananas sativum as green corrosion inhibitor for aluminium in hydrochloric acid solutions. Green Chem. Lett. Rev. 3, 61–68 (2010). https://doi.org/10.1080/17518250903505253

    Article  Google Scholar 

  17. Abdel Hameed, R.S.: Ranitidine drugs as non-toxic corrosion inhibitors for mild steel in hydrochloric acid medium. Port. Electrochim. Acta. 29, 273–285 (2011). https://doi.org/10.4152/pea.201104273

    Article  Google Scholar 

  18. Ramezanzadeh, M.; Sanaei, Z.; Bahlakeh, G.; Ramezanzadeh, B.: Highly effective inhibition of mild steel corrosion in 3.5% NaCl solution by green Nettle leaves extract and synergistic effect of eco-friendly cerium nitrate additive: experimental, MD simulation and QM investigations. J. Mol. Liq. 256, 67–83 (2018). https://doi.org/10.1016/j.molliq.2018.02.021

    Article  Google Scholar 

  19. Shabani-Nooshabadi, M.; Hoseiny, F.S.; Jafari, Y.: Corrosion inhibition of copper by ephedra sarcocarpa plant extract as green corrosion inhibitor in strong acidic medium. Anal. Bioanal. Electrochem. 6, 341–354 (2014)

    Google Scholar 

  20. Shabani-Nooshabadi, M.; Hoseiny, F.S.; Jafari, Y.: Green approach to corrosion inhibition of copper by the extract of calligonum comosum in strong acidic medium. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 46, 293–299 (2015). https://doi.org/10.1007/s11661-014-2634-1

    Article  Google Scholar 

  21. Shabani-Nooshabadi, M.; Ghandchi, M.S.: Santolina chamaecyparissus extract as a natural source inhibitor for 304 stainless steel corrosion in 3.5% NaCl. J. Ind. Eng. Chem. 31, 231–237 (2015). https://doi.org/10.1016/j.jiec.2015.06.028

    Article  Google Scholar 

  22. Lebrini, M.; Robert, F.; Roos, C.: Alkaloids extract from Palicourea guianensis plant as corrosion inhibitor for C38 steel in 1 M hydrochloric acid medium. Int. J. Electrochem. Sci. 6, 847–859 (2011)

    Google Scholar 

  23. El Ouariachi, E.; Bouyanzer, A.; Salghi, R.; Hammouti, B.; Desjobert, J.M.; Costa, J.; Paolini, J.; Majidi, L.: Inhibition of corrosion of mild steel in 1 M HCl by the essential oil or solvent extracts of Ptychotis verticillata. Res. Chem. Intermed. 41, 935–946 (2015). https://doi.org/10.1007/s11164-013-1246-5

    Article  Google Scholar 

  24. Lahhit, N.; Bouyanzer, A.; Desjobert, J.-M.; Hammouti, B.; Salghi, R.; Costa, J.; Jama, C.; Bentiss, F.; Majidi, L.: Fennel (Foeniculum Vulgare) essential oil as green corrosion inhibitor of carbon steel in hydrochloric acid solution. Port. Electrochim. Acta. 29, 127–138 (2011). https://doi.org/10.4152/pea.201102127

    Article  Google Scholar 

  25. Halambek, J.; Berković, K.; Vorkapić-Furač, J.: Laurus nobilis L. oil as green corrosion inhibitor for aluminium and AA5754 aluminium alloy in 3% NaCl solution. Mater. Chem. Phys. 137, 788–795 (2013). https://doi.org/10.1016/j.matchemphys.2012.09.066

    Article  Google Scholar 

  26. Rieger, K.A.; Schiffman, J.D.: Electrospinning an essential oil: cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers. Carbohydr. Polym. 113, 561–568 (2014). https://doi.org/10.1016/j.carbpol.2014.06.075

    Article  Google Scholar 

  27. Growcock, F.B.; Frenier, W.W.: Kinetics of steel corrosion in hydrochloric acid inhibited with trans-cinnamaldehyde. J. Electrochem. Soc. 135, 817–823 (1988)

    Article  Google Scholar 

  28. Cabello, G.; Funkhouser, G.P.; Cassidy, J.; Kiser, C.E.; Lane, J.; Cuesta, A.: CO and trans-cinnamaldehyde as corrosion inhibitors of I825, L80-13Cr and N80 alloys in concentrated HCl solutions at high pressure and temperature. Electrochim. Acta 97, 1–9 (2013). https://doi.org/10.1016/j.electacta.2013.03.011

    Article  Google Scholar 

  29. Keleş, H.; Keleş, M.: Electrochemical investigation of a schiff base synthesized by cinnamaldehyde as corrosion inhibitor on mild steel in acidic medium. Res. Chem. Intermed. 40, 193–209 (2014). https://doi.org/10.1007/s11164-012-0955-5

    Article  Google Scholar 

  30. Negm, A.N.; Yousef, A.M.; Tawfik, M.S.: Impact of synthesized and natural compounds in corrosion inhibition of carbon steel and aluminium in acidic media. Recent Patents Corros. Sci. 3, 58–68 (2013)

    Article  Google Scholar 

  31. Solmaz, R.: Investigation of the inhibition effect of 5-((E)-4-phenylbuta-1,3-dienylideneamino)-1,3,4-thiadiazole-2-thiol Schiff base on mild steel corrosion in hydrochloric acid. Corros. Sci. 52, 3321–3330 (2010). https://doi.org/10.1016/j.corsci.2010.06.001

    Article  Google Scholar 

  32. Jafferji, H.; Sharifi, N.P.; Schneider, E.M.; Sakulic, A.R.: Investigation of incorporating cinnamaldehyde into Lightweight Aggregate for potential corrosion reduction in cementitious materials. Cement Concr. Compos. 87, 1–9 (2018)

    Article  Google Scholar 

  33. Jafferji, H.; Sakulich, A.R.; Schiffman, J.D.: Preliminary study on mitigating steel reinforcement corrosion with bioactive agent. Cement Concr. Compos. 69, 9–17 (2016)

    Article  Google Scholar 

  34. Hossain, S.M.Z.; Al-Shater, A.; Kareem, S.A.R.: Cinnamaldehyde as a green inhibitor in mitigating AISI 1015 carbon steel corrosion in HCl. Arab J Sci Eng 44, 5489–5499 (2019)

    Article  Google Scholar 

  35. Rekkab, S.; Zarrok, H.; Salghi, R.; Zarrouk, A.; Bazzi, L.; Hammouti, B.; Kabouche, Z.; Touzani, R.; Zougagh, M.: Green corrosion inhibitor from essential oil of eucalyptus globulus (Myrtaceae) for C38 steel in sulfuric acid solution. J. Mater. Environ. Sci. 3, 613–627 (2012)

    Google Scholar 

  36. Emregül, K.C.; Abdülkadir Akay, A.; Atakol, O.: The corrosion inhibition of steel with Schiff base compounds in 2 M HCl. Mater. Chem. Phys. 93, 325–329 (2005). https://doi.org/10.1016/j.matchemphys.2005.03.008

    Article  Google Scholar 

  37. Messaadia, L.; Id El mouden, O.; Anejjar, A.; Messali, M.; Salghi, R.; Benali, O.; Cherkaoui, O.; Lallam, A.: Adsorption and corrosion inhibition of new synthesized pyridazinium-based ionic liquid on carbon steel in 05 M H2SO4. J. Mater. Environ. Sci. 6, 598–606 (2015)

    Google Scholar 

  38. De Souza, F.S.; Gonçalves, R.S.; Spinelli, A.: Assessment of caffeine adsorption onto mild steel surface as an eco-friendly corrosion inhibitor. J. Braz. Chem. Soc. 25, 81–90 (2014). https://doi.org/10.5935/0103-5053.20130270

    Article  Google Scholar 

  39. Cristofari, G.; Znini, M.; Majidi, L.; Bouyanzer, A.; Al-Deyab, S.S.; Paolini, J.; Hammouti, B.; Costa, J.: Chemical composition and anti-corrosive activity of Pulicaria mauritanica essential oil against the corrosion of mild steel in 0.5 M H 2SO 4. Int. J. Electrochem. Sci. 6, 6699–6717 (2011)

    Google Scholar 

  40. Keleş, H.; Keleş, M.: Electrochemical investigation of a schiff base synthesized by cinnamaldehyde as corrosion inhibitor on mild steel in acidic medium. Res. Chem. Intermed. 40, 193–209 (2014). https://doi.org/10.1007/s11164-012-0955-5

    Article  Google Scholar 

  41. Jafferji, H.; Sakulich, A.R.; Schiffman, J.D.: Preliminary study on mitigating steel reinforcement corrosion with bioactive agent. Cem. Concr. Compos. 69, 9–17 (2016). https://doi.org/10.1016/j.cemconcomp.2016.02.011

    Article  Google Scholar 

  42. Zucchi, F.; Trabanelli, G.; Brunoro, G.: Iron corrosion inhibition in hot 4 M HCl solution by t-cinnamaldehyde and its structure-related compounds. Corros. Sci. 36, 1683–1690 (1994). https://doi.org/10.1016/0010-938X(94)90123-6

    Article  Google Scholar 

  43. Manssouri, M.; El Ouadi, Y.; Znini, M.; Costa, J.; Bouyanzer, A.; Desjobert, J.M.; Majidi, L.: Adsorption proprieties and inhibition of mild steel corrosion in HCl solution by the essential oil from fruit of Moroccan Ammodaucus leucotrichus. J. Mater. Environ. Sci. 6, 631–646 (2015)

    Google Scholar 

  44. Reaction Rates. Retrieved from Tutorvista.com: http://chemistry.tutorvista.com/physical-chemistry/reaction-rates.html#activation-energy (n.d.)

  45. Awad, M.I.: Eco friendly corrosion inhibitors: inhibitive action of quinine for corrosion of low carbon steel in 1 M HCl. J. Appl. Electrochem. 36, 1163–1168 (2006). https://doi.org/10.1007/s10800-006-9204-1

    Article  Google Scholar 

  46. Guan, N.M.; Xueming, L.; Fei, L.: Synergistic inhibition between o-phenanthroline and chloride ion on cold rolled steel corrosion in phosphoric acid. Mater. Chem. Phys. 86, 59–68 (2004)

    Article  Google Scholar 

  47. Noor, E.A.; Al-Moubaraki, A.H.: Thermodynamic study of metal corrosion and inhibitor adsorption processes in mild steel/1-methyl-4[4′(-X)-styryl pyridinium iodides/hydrochloric acid systems. Mater. Chem. Phys. 110, 145–154 (2008). https://doi.org/10.1016/j.matchemphys.2008.01.028

    Article  Google Scholar 

  48. Sankarapapavinasam, S.; Ahmed, M.F.: Benzenethiols as inhibitors for the corrosion of copper. J. Appl. Electrochem. 22, 390–395 (1992). https://doi.org/10.1007/BF01092694

    Article  Google Scholar 

  49. Andreani, S.; Znini, M.; Paolini, J.; Majidi, L.; Hammouti, B.; Costa, J.; Muselli, A.: Study of corrosion inhibition for mild steel in hydrochloric acid solution by Limbarda crithmoides (L.) essential oil of Corsica. J. Mater. Environ. Sci. 7, 187–195 (2016)

    Google Scholar 

  50. Eduok, U.M.; Khaled, M.: Corrosion inhibition for low-carbon steel in 1 MH 2 SO 4 solution by phenytoin: evaluation of the inhibition potency of another “anticorrosive drug”. Res. Chem. Intermed. 41(9), 6309–6324 (2015)

    Article  Google Scholar 

  51. Umoren, S.A.; Eduok, U.M.; Israel, A.U.; Obot, I.B.; Solomon, M.M.: Coconut coir dust extract: a novel eco-friendly corrosion inhibitor for Al in HCl solutions. Green Chem. Lett. Rev. 5, 303–313 (2012). https://doi.org/10.1080/17518253.2011.625980

    Article  Google Scholar 

  52. Singh, A.; Ansari, K.R.; Quraishi, M.A.; Lgaz, H.: Effect of electron donating functional groups on corrosion inhibition of J55 steel in a sweet corrosive environment: experimental, density functional theory, and molecular dynamic simulation. Materials (Basel). 12, (2018). https://doi.org/10.3390/ma12010017

    Article  Google Scholar 

  53. Cheng, S.; Chen, S.; Liu, T.; Chang, X.; Yin, Y.: Carboxymenthylchitosan as an ecofriendly inhibitor for mild steel in 1 M HCl. Mater. Lett. 61, 3276–3280 (2007). https://doi.org/10.1016/j.matlet.2006.11.102

    Article  Google Scholar 

Download references

Acknowledgement

The author(s) would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through project No. DF181018. The authors also would like to gratefully acknowledge the support provided by Deanship of Scientific Research, University of Bahrain, Kingdom of Bahrain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Zakir Hossain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakir Hossain, S.M., Kareem, S.A., Alshater, A.F. et al. Effects of Cinnamaldehyde as an Eco-Friendly Corrosion Inhibitor on Mild Steel in Aerated NaCl Solutions. Arab J Sci Eng 45, 229–239 (2020). https://doi.org/10.1007/s13369-019-04236-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04236-4

Keywords

Navigation