Skip to main content
Log in

A Hybrid Intelligent Approach for Solar Photovoltaic Power Forecasting: Impact of Aerosol Data

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The penetration of solar photovoltaic (PV) power in distributed generating system is increasing rapidly. The increased level of PV penetration causes various issues like grid stability, reliable power generation and power quality; therefore, it becomes utmost important to forecast the PV power using the meteorological parameters. The proposed model is developed on the basis of meteorological data as input parameters, and the impacts of these parameters have been analyzed with respect to forecasted PV power. The main focus of this research is to explore the performance of optimization-based PV power forecasting models with varying aerosol particles and other meteorological parameters. A newly developed intelligent approach based on grey wolf optimization (GWO) using multilayer perceptron (MLP) has been used to forecast the PV power. The performance of the GWO-based MLP model is evaluated on the basis of statistical indicators such as normalized mean bias error (NMBE), normalized mean absolute error (NMAE), normalized root-mean-square error (NRMSE) and training error. The results of the developed model show the values of NMBE, NMAE and NRMSE as 2.267%, 4.681% and 6.67% respectively. To validate the results, a comparison has been made with particle swarm optimization, Levenberg–Marquardt algorithm and adaptive neuro-fuzzy approach. The performance of the model is found better as compared to other intelligent techniques. The obtained results may be used for demand response applications in smart grid environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Source: NASA Earth Observations (Terra/MODIS)

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Hosenuzzaman, M.; Rahima, N.A.; Selvaraj, J.; Hasanuzzaman, M.; Maleka, A.B.M.A.; Nahar, A.: Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew. Sustain. Energy Rev. 41, 284–297 (2015)

    Google Scholar 

  2. Long, H.; Zhang, Z.; Su, Y.: Analysis of daily solar power prediction with data-driven approaches. Appl. Energy 126, 29–37 (2014)

    Google Scholar 

  3. Rizwan, M.; Jamil, M.; Kirmani, S.; Kothari, D.P.: Fuzzy logic based modeling and estimation of global solar energy using meteorological parameters. Energy 70, 685–691 (2014)

    Google Scholar 

  4. Gala, Y.; Fernandez, A.; Díaz, J.; Dorronsoro, J.R.: Hybrid machine learning forecasting of solar radiation values. Neurocomputing 176, 48–59 (2016)

    Google Scholar 

  5. Marzband, M.; Azarinejadian, F.; Savaghebi, M.; Pouresmaeil, E.; Guerrero, J.; Lightbody, G.: Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations. Renew. Energy 126, 96–106 (2018)

    Google Scholar 

  6. Monfared, H.; Ghasemi, A.; Loni, A.; Marzband, M.: A hybrid price-based demand response program for the residential micro-grid. Energy 185, 274–285 (2019)

    Google Scholar 

  7. Al-Sumaiti, A.; Salama, M.; El-Moursi, M.; Alsumaiti, T.; Marzband, M.: Enabling electricity access: revisiting load models for AC-grid operation—part I. IET Gener. Transm. Distrib. 12, 2563–2571 (2019)

    Google Scholar 

  8. Aryanpur, V.; Atabaki, M.; Marzband, M.; Siano, P.; Ghayoumi, K.: An overview of energy planning in Iran and transition pathways towards sustainable electricity supply sector. Renew. Sustain. Energy Rev. 112, 58–74 (2019)

    Google Scholar 

  9. Voyant, C.; Notton, G.; Kalogirou, G.; Nivet, M.L.; Paoli, C.; Motte, F.; Fouilloy, A.: Machine learning methods for solar radiation forecasting: a review. Renew. Energy 107, 569–582 (2017)

    Google Scholar 

  10. Wan, C.; Zhao, J.; Song, Y.; Xu, Z.; Lin, J.; Hu, Z.: Photovoltaic and solar power forecasting for smart grid energy management. J. Power Energy Syst. 1, 38–46 (2015)

    Google Scholar 

  11. Antonanzas, J.; Osorio, N.; Escobar, R.; Urraca, R.; Martinez-de-Pison, F.J.; Antonanzas-Torres, F.: Review of photovoltaic power forecasting. Sol. Energy 136, 78–111 (2016)

    Google Scholar 

  12. Chaturvedi, D.K.; Isha: Solar forecasting: a review. Int. J. Comput. Appl. 145, 28–50 (2016)

    Google Scholar 

  13. Martinez-Anido, C.B.; Botor, B.; Florita, A.R.; Draxl, C.; Lu, S.; Hamann, H.F.; Hodge, B.M.: The value of day-ahead solar power forecasting improvement. Sol. Energy 129, 192–203 (2016)

    Google Scholar 

  14. Sanusi, Y.K.; Ojo, M.O.: Evaluation of clearness index and diffuse ratio of some locations in South Western, Nigeria using solar radiation data. J. Appl. Phys. 5, 45–51 (2015)

    Google Scholar 

  15. Chu, Y.; Urquhart, B.; Gohari, S.M.I.; Pedro, H.T.C.; Kleissl, J.; Coimbra, C.F.M.: Short-term reforecasting of power output from a 48 MWe solar PV plant. Sol. Energy 112, 68–77 (2015)

    Google Scholar 

  16. Lia, X.; Wagner, F.; Peng, W.; Yang, J.; Mauzeralla, D.L.: Reduction of solar photovoltaic resources due to air pollution in China. Proc. Natl. Acad. Sci. 114, 1–6 (2017)

    Google Scholar 

  17. Diagne, M.; David, M.; Lauret, P.; Boland, J.; Schmutz, N.: Solar irradiation forecasting: state-of-the-art and proposition for future developments for small-scale insular grids. Renew. Sustain. Energy Rev. 27, 65–76 (2013)

    Google Scholar 

  18. De Giorgi, M.G.; Congedo, P.M.; Malvoni, M.: Photovoltaic power forecasting using statistical methods: impact of weather data. IET Sci. Meas. Technol. 8, 90–97 (2014)

    Google Scholar 

  19. Garba, M.B.; Muhammad, A.; Musa, M.; Mohammed, A.G.: Assessing the performance of global solar radiation empirical equations in Sokoto, Nigeria using meteorological parameters. Niger. J. Technol. 37, 358–364 (2018)

    Google Scholar 

  20. Amrouche, B.; Pivert, X.L.: Artificial neural network based daily local forecasting for global solar radiation. Appl. Energy 130, 333–341 (2015)

    Google Scholar 

  21. Mellit, A.; Pavan, A.M.: A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy. Sol. Energy 84, 807–821 (2010)

    Google Scholar 

  22. Ehsan, R.M.; Simon, S.P.; Venkateswaran, P.R.: Day-ahead forecasting of solar photovoltaic output power using multilayer perceptron. Neural Comput. Appl. 28, 3981–3992 (2017)

    Google Scholar 

  23. Chen, S.X.; Gooi, H.B.; Wang, M.Q.: Solar radiation forecast based on fuzzy logic and neural networks. Renew. Energy 60, 195–201 (2013)

    Google Scholar 

  24. Safi, S.; Zeroual, A.; Hassani, M.: Prediction of global daily solar radiation using higher order statistics. Renew. Energy 27, 647–660 (2002)

    Google Scholar 

  25. Chupong, C.; Plangklang, B.: Forecasting power output of PV grid connected system in Thailand without using solar radiation measurement. Energy Proc. 9, 230–237 (2011)

    Google Scholar 

  26. De Giorgi, M.G.; Ficarella, A.; Tarantino, M.: Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods. Energy 36, 3968–3978 (2011)

    Google Scholar 

  27. Yang, H.T.; Huang, C.; Huang, Y.; Pa, Y.: A weather-based hybrid method for 1-day ahead hourly forecasting of PV power output. IEEE Trans. Sustain. Energy 5, 917–925 (2014)

    Google Scholar 

  28. Basaran, K.; Özçift, A.; Kılınç, D.: A new approach for prediction of solar radiation with using ensemble learning algorithm. Arab. J. Sci. Eng. 4, 1–13 (2019)

    Google Scholar 

  29. Douiri, M.R.: A predictive model for solar photovoltaic power based on computational intelligence technique. Arab. J. Sci. Eng. 2, 1–18 (2019)

    Google Scholar 

  30. Haykin, Simon: Neural Networks: A Comprehensive Foundation. Prentice Hall PTR, Upper Saddle River (1998)

    MATH  Google Scholar 

  31. Zhang, Z.: Artificial neural network. In: Multivariate Time Series Analysis in Climate and Environmental Research, pp. 1–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67340-0_1

    Google Scholar 

  32. Piliougine, M.; Elizondo, D.; Mora-Lopez, L.; Sidrach-de-Cardona, M.: Multilayer perceptron applied to the estimation of the influence of the solar spectral distribution on thin-film photovoltaic modules. Appl. Energy 112, 610–617 (2013)

    Google Scholar 

  33. Sundar, C.; Chitradevi, M.; Geetharamani, G.: Classification of cardiotocogram data using neural network based machine learning technique. Int. J. Comput. Appl. 47, 93–103 (2012)

    Google Scholar 

  34. Hagan, M.T.; Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5, 989–993 (1995)

    Google Scholar 

  35. Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: Grey Wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Google Scholar 

  36. Kennedy, J.; Eberhart, R.: Particle swam optimization. In: IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

  37. Lin, C.; Yang, K.; Huang, J.; Tang, W.; Qin, J.; Niu, X.; Chen, Y.; Chen, D.; Lu, N.; Fu, R.: Impacts of wind stilling on solar radiation variability in China. Sci. Rep. 5, 1–7 (2015)

    Google Scholar 

  38. Srivastava, P.; Dey, S.; Agarwal, P.; Basil, G.: Aerosol characteristics over Delhi national capital region: a satellite view. Int. J. Remote Sens. 35, 5036–5052 (2014)

    Google Scholar 

  39. Liu, J.; Fang, W.; Zhang, X.; Yang, C.: An improved photovoltaic power forecasting model with the assistance of aerosol index data. IEEE Trans. Sustain. Energy 6, 434–442 (2015)

    Google Scholar 

  40. Chaabane, M.; Masmoudi, M.; Medhioub, K.: Determination of Linke turbidity factor from solar radiation measurement in northern Tunisia. Renew. Energy 29, 2065–2076 (2004)

    Google Scholar 

  41. Wang, L.; Chen, Y.; Niu, Y.; Salazar, G.; Gong, W.: Analysis of atmospheric turbidity in clear skies at Wuhan, Central China. J. Earth Sci. 28, 729–738 (2017)

    Google Scholar 

  42. Kasten, F.: A simple parameterization of the pyrheliometric formula for determining the Linke turbidity factor. Meteorol. Rdsch. 33, 124–127 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astitva Kumar.

Appendix

Appendix

See Figs. 1718 and Table 6.

Fig. 17
figure 17

Experimental setup for solar PV power forecasting

Fig. 18
figure 18

Linear regression plot of the inputs and the solar photovoltaic power, a PV power versus irradiance, b PV power versus temperature, c PV power versus Linke turbidity, d PV power versus wind speed

Table 6 Daily PV output and its correlation with the inputs considered

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Rizwan, M. & Nangia, U. A Hybrid Intelligent Approach for Solar Photovoltaic Power Forecasting: Impact of Aerosol Data. Arab J Sci Eng 45, 1715–1732 (2020). https://doi.org/10.1007/s13369-019-04183-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04183-0

Keywords

Navigation