Skip to main content
Log in

Sono-electro-chemical Treatment of Reactive Black 5 Dye and Real Textile Effluent Using MnSO4/Na2S2O8 Electrolytes

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study examines the decolourization of Reactive Black 5 (RB5) dye in aqueous solution and textile wastewater treatment by sono-electro-chemical method to obtain synergistic effect. The electrolytic cell equipped with stainless steel anode and graphite cathode was used for this study. Sodium persulphate (NaS) and manganese sulphate (MnS) are used as electrolytes to facilitate the process. The effects of various operational parameters such as initial solution pH, NaS concentration, MnS concentration, ultrasound power and voltage on the sono-electro-chemical treatment were investigated. The results have demonstrated that the enhanced colour removal efficiency was achieved at pH 2 for electro-chemical process; however, better efficiency was reached by synergistic effect of sono-electro-chemical treatment in the presence of less amount of electrolytes with the short reaction time than the individual sono-chemical and electro-chemical process. The maximum decolourization achieved was 89% under the condition: 100 ppm RB5, 50 ppm NaS, 75 ppm MnS, solution pH and 44 W ultrasound power, 20 V. When the similar methodology was adopted to real textile effluent, 90% of TOC removal was observed and it indicates the employment of studied process for industrial wastewater treatment purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P.: Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77, 247–255 (2001)

    Google Scholar 

  2. Wang, X.J.; Gu, X.Y.; Lin, D.X.; Dong, F.; Wan, X.F.: Treatment of acid rose dye containing waste-water by ozonizing-biological aerated filter. Dyes Pigments 74(3), 736–740 (2007)

    Google Scholar 

  3. Baban, A.; Yediler, A.; Ciliz, N.K.: Integrated water management and CP implementation for wool and textile blend processes. Clean 38(1), 84–90 (2010)

    Google Scholar 

  4. Pinheiro, H.M.; Touraud, E.; Thomas, O.: Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes Pigments 61, 121–139 (2004)

    Google Scholar 

  5. Börnick, H.; Schmidt, T.C.: Amines. In: Reemtsma, T., Jekel, M. (eds.) Organic Pollutants in the Water Cycle: Properties, Occurrence, Analysis and Environmental Relevance of Polar Compounds, pp. 181–208. Wiley, Weinheim (2006). ISBN 978-3-527-31297-9

    Google Scholar 

  6. Puvaneswari, N.; Muthukrishnan, J.; Gunasekaran, P.: Toxicity assessment and microbial degradation of azo dyes. Indian J. Exp. Biol. 144, 618–626 (2006)

    Google Scholar 

  7. Forgacs, E.; Cserhati, T.; Oros, G.: Removal of synthetic dyes from wastewaters: a review. Environ. Int. 30, 953–971 (2004)

    Google Scholar 

  8. Demir, H.; Deveci, M.A.: Comparison of ultrasound and conventional technique for removal of methyl orange by luffa cylindrica fibers. Arab. J. Sci. Eng. 43, 5881–5889 (2018)

    Google Scholar 

  9. Gogate, P.R.; Pandit, A.B.: A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv. Environ. Res. 8, 501–551 (2004)

    Google Scholar 

  10. Saravanan, S.; Sivasankar, T.: Ultrasound assisted Fenton’s treatment of Reactive Black 5 dye: effect of system parameters, kinetics and mechanism. Desalin. Water Treat. 56, 492–501 (2015)

    Google Scholar 

  11. Eren, Z.; Acar, F.N.: Effect of Fenton’s reagent on the degradability of CI Reactive Yellow 15. Color. Technol. 122(5), 259–263 (2006)

    Google Scholar 

  12. López-Grimau, V.; Gutiérrez, M.C.: Decolourisation of simulated reactive dyebath effluents by electro-chemical oxidation assisted by UV light. Chemosphere 62, 106–112 (2006)

    Google Scholar 

  13. Kariyajjanavar, P.; Jogttappa, N.; Nayaka, Y.A.: Studies on degradation of reactive textile dyes solution by electro-chemical Method. J. Hazard. Mater. 190, 952–961 (2011)

    Google Scholar 

  14. Riera-Torres, M.; Gutiérrez, M.-C.: Colour removal of three reactive dyes by UV light exposure after electrochemical treatment. Chem. Eng. J. 156, 114–120 (2010)

    Google Scholar 

  15. Wang, K.-S.; Chen, H.-Y.; Huang, L.-C.; Su, Y.-C.; Chang, S.-H.: Degradation of Reactive Black 5 using combined electro-chemical degradation-solar light/immobilized TiO2 film process and toxicity evaluation. Chemosphere 72, 299–305 (2008)

    Google Scholar 

  16. Suslick, K.S.; Bang, J.H.: Applications of ultrasound to the synthesis of nano-structured materials. Adv. Mater. 22, 1039–1959 (2010)

    Google Scholar 

  17. Mishra, S.K.; Deymier, P.A.; Muralidharan, K.; Frantziskonis, G.; Pannala, S.; Simunovic, S.: Modeling the coupling of reaction kinetics and hydrodynamics in a collapsing cavity. Ultrason. Sonochem. 17, 258–265 (2010)

    Google Scholar 

  18. Mishra, S.K.; De, A.: Coupling of reaction and hydrodynamics around a reacting block modeled by Lattice Boltzmann Method (LBM). Comput. Fluids 71, 91–97 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Keswani, M.; Raghavan, S.; Deymier, P.: Electrochemical investigations of stable cavitation from bubbles generated during reduction of water. Ultrason. Sonochem. 21, 1893–1899 (2014)

    Google Scholar 

  20. De, A.; Mishra, S.K.: Simulation of chemical reactions induced by droplet in a phase separating media using Lattice Boltzmann-kinetic Monte-Carlo framework. Comput. Fluids 89, 133–142 (2014)

    MATH  Google Scholar 

  21. Martín de Vidales, M.J.; Millán, M.; Sáez, C.; Cañizares, P.; Rodrigo, M.A.: Irradiated-assisted electrochemical processes for the removal of persistent pollutants from real wastewater. Sep. Purif. Technol. 175, 428–434 (2017)

    Google Scholar 

  22. Rivera, M.; Pazos, M.; Sanromán, M.Á.: Development of an electro-chemical cell for the removal of Reactive Black 5. Desalination 274, 39–43 (2011)

    Google Scholar 

  23. Nazari, R.; Rajić, L.; Xue, Y.; Zhou, W.; Alshawabkeh, A.N.: Degradation of 4-chlorophenol in aqueous solution by sono-electro-Fenton process. Int. J. Electrochem. Sci. 13, 9214–9230 (2018)

    Google Scholar 

  24. Steter, J.R.; Barros, W.R.P.; Lanza, M.R.V.; Motheo, A.J.: Electro-chemical and sonoelectro-chemical processes applied to amaranth dye degradation. Chemosphere 117, 200–207 (2014)

    Google Scholar 

  25. Martínez, S.S.; Uribe, E.V.: Enhanced sonochemical degradation of azure B dye by the electroFenton process. Ultrason. Sonochem. 19, 174–178 (2012)

    Google Scholar 

  26. Thokchom, B.; Pandit, A.B.; Qiu, P.; Park, B.; Choi, J.; Khim, J.: A review on sonoelectrochemical technology as an upcoming alternative for pollutant degradation. Ultrason. Sonochem. 27, 210–234 (2015)

    Google Scholar 

  27. Poza-Nogueiras, V.; Rosales, E.; Pazos, M.; Sanromán, M.Á.: Current advances and trends in electro-Fenton process using heterogeneous catalysts—a review. Chemosphere 201, 399–416 (2018)

    Google Scholar 

  28. Cherepanov, P.V.; Ashokkumar, M.; Andreeva, D.V.: Ultrasound assisted formation of Al–Ni electrocatalyst for hydrogen evolution. Ultrason. Sonochem. 23, 142–147 (2015)

    Google Scholar 

  29. Thokchom, B.; Qiu, P.; Cui, M.; Park, B.; Pandit, A.B.; Khim, J.: Magnetic Pd@Fe3O4 composite nanostructure as recoverable catalyst for sonoelectrohybrid degradation of Ibuprofen. Ultrason. Sonochem. 34, 262–272 (2017)

    Google Scholar 

  30. American Public Health Association (APHA): Standard Methods for the Examination of Water and Wastewater, 17th edn. American Public Health Association, Washington (1998)

    Google Scholar 

  31. Sivasankar, T.; Moholkar, V.S.: Physical insights into the sonochemical degradation of recalcitrant organic pollutants with cavitation bubble dynamics. Ultrason. Sonochem. 16(6), 769–781 (2009)

    Google Scholar 

  32. Bechtold, T.; Mader, C.; Mader, J.: Cathodic decolourization of textile dyebaths: tests with full scale plant. J. Appl. Electrochem. 32, 943–950 (2002)

    Google Scholar 

  33. Dinesh, G.K.; Anandan, S.; Sivasankar, T.: Sonophotocatalytic treatment of Bismarck Brown G dye and real textile effluent using synthesized novel Fe(0) doped TiO2 catalyst. RSC Adv. 5, 10440–10451 (2015)

    Google Scholar 

  34. Ramachandran, R.; Saraswathi, R.: Sonoelectrochemical studies on mass transport in some standard redox systems. Russ. J. Electrochem. 47, 15–25 (2011)

    Google Scholar 

  35. Babuponnusami, A.; Muthukumar, K.: Advanced oxidation of phenol: a comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes. Chem. Eng. J. 183, 1–9 (2012)

    Google Scholar 

  36. Vajnhandl, S.; Marechal, A.M.L.: Case study of the sonochemical decolourization of textile azo dye Reactive Black 5. J. Hazard. Mater. 141, 329–335 (2007)

    Google Scholar 

  37. Song, P.; Yang, Z.; Xu, H.; Huang, J.; Yang, X.; Wang, L.: Investigation of influencing factors and mechanism of antimony and arsenic removal by electrocoagulation using Fe − Al electrodes. Ind. Eng. Chem. Res. 53, 12911–12919 (2014)

    Google Scholar 

  38. Georgiou, D.; Melidis, P.; Aivasidis, A.; Gimouhopoulos, K.: Degradation of azo-reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide. Dyes Pigments 52, 69–78 (2002)

    Google Scholar 

  39. Kurukutla, A.B.; Satishkumar, P.; Anandan, S.; Sivasankar, T.: Intensification of sonochemical degradation of rhodamine B using oxidants, hydrogen peroxide/peroxydisulphate/peroxymonosulphate with Fe2+ ion: proposed pathway and kinetics. Environ. Eng. Sci. 32(2), 129–140 (2015)

    Google Scholar 

  40. Sauer, T.; Neto, G.C.; José, H.J.; Moreira, R.F.P.M.: Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. J. Photochem. Photobiol. A 149, 147–154 (2002)

    Google Scholar 

  41. Tallec, A.: Electrochimie Organique: Synthéses et Mecanismes, pp. 95–97. Ed Masson, Paris (1985)

    Google Scholar 

  42. Lane, B.S.; Vogt, M.; DeRose, V.J.; Burgess, K.J.: Manganese-catalyzed epoxidations of alkenes in bicarbonate solutions. J. Am. Chem. Soc. 124, 11946–11954 (2002)

    Google Scholar 

  43. Reddy, B.R.; Sivasankar, T.; Sivakumar, M.; Moholkar, V.S.: Physical facets of ultrasonic cavitational synthesis of zinc ferrite particles. Ultrason. Sonochem. 17, 416–426 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thirugnanasambandam Sivasankar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johin, J., Nidheesh, P.V. & Sivasankar, T. Sono-electro-chemical Treatment of Reactive Black 5 Dye and Real Textile Effluent Using MnSO4/Na2S2O8 Electrolytes. Arab J Sci Eng 44, 9987–9996 (2019). https://doi.org/10.1007/s13369-019-04159-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04159-0

Keywords

Navigation