Skip to main content
Log in

Examining the Mechanical and Thermomechanical Properties of Polymethylmethacrylate Composites Reinforced with Nettle Fibres

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the mechanical and thermomechanical properties of nettle fibre-reinforced polymethylmethacrylate composites. The polymethylmethacrylate composites reinforced with nettle fibres were manufactured using nettle fibres obtained using the natural methods. The nettle fibre contents were 0, 2.5, 5, 7.5, and 10 Vf %. The composites so formed were characterized in terms of their mechanical and thermomechanical properties. The mechanical properties of nettle-reinforced composites were characterized in terms of bending stress, bending modulus, impact strength, and fracture toughness tests, whilst their behaviour was determined by heat deviation temperature and Vicat softening temperature. The micro-mechanisms underlying the toughening and fracture processes were observed in the light of studies of the microstructure of fractures. From the mechanical properties of composites reinforced with 10% nettle fibres, an increase of 75% in bending stress, 40% in impact strength, and 106% in fracture toughness was recorded. The findings show that nettle fibres can be used as an important reinforcement material for environmentally friendly composite applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Avual, M.R.: A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater. Chem. Eng. J. 266, 368–375 (2015). https://doi.org/10.1016/j.cej.2014.12.094

    Article  Google Scholar 

  2. Avual, M.R.; Hasan, M.M.; Shahat, A.; Naushad, M.; Shiwaku, H.; Yaita, T.: Investigation of ligand immobilized nano-composite adsorbent for efficient cerium(III) detection and recovery. Chem. Eng. J. 265, 210–218 (2015). https://doi.org/10.1016/j.cej.2014.12.052

    Article  Google Scholar 

  3. Avual, M.R.: Novel nanocomposite materials for efficient and selective mercury ions capturing from wastewater. Chem. Eng. J. 307, 456–465 (2017). https://doi.org/10.1016/j.cej.2016.08.108

    Article  Google Scholar 

  4. Shahata, A.; Hassana, H.M.A.; El-Shahatc, M.F.; Shahawyd, O.E.; Avual, M.R.: Visual nickel(II) ions treatment in petroleum samples using a mesoporous composite adsorbent. Chem. Eng. J. 334(15), 957–967 (2018). https://doi.org/10.1016/j.cej.2017.10.105

    Article  Google Scholar 

  5. Avual, M.R.: Innovative composite material for efficient and highly selective Pb(II) ion capturing from wastewater. J. Mol. Liq. 284, 502–510 (2019)

    Google Scholar 

  6. Kiruthika, A.V.: A review on physico-mechanical properties of bast fibre reinforced polymer composites. J. Build. Eng. 9, 91–99 (2017)

    Google Scholar 

  7. Low, İ.M.; McGrath, M.; Lawrence, D.; Schmidt, P.: Mechanical and fracture properties of cellulose-fibre-reinforced epoxy laminates. Compos. A Appl. Sci. Manuf. 38, 963–974 (2007)

    Google Scholar 

  8. Hassan, F.; Zulkifli, R.; Ghazali, M.J.; Azhari, C.H.: Kenaf fiber composite in automotive industry: an overview. Int. J. Adv. Sci. Eng. Inf. Technol. 7(1), 315–321 (2017)

    Google Scholar 

  9. Campilho, R.D.S.G.: Natural Fiber Composites. CRC Press, Boca Raton (2016)

    Google Scholar 

  10. George, M.; Chae, M.; Bressler, D.C.: Composite materials with bast fibres: structural, technical, and environmental properties. Prog. Mater. Sci. 83, 1–23 (2016)

    Google Scholar 

  11. Mohanty, A.K.; Misra, M.; Drzal, L.T.: Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos. Interfaces 8, 313–343 (2001)

    Google Scholar 

  12. Kroehong, W.; Jaturapitakkul, C.; Pothisiri, T.; Chindaprasirt, P.: Effect of oil palm fiber content on the physical and mechanical properties and microstructure of high-calcium fly ash geopolymer paste. Arab. J. Sci. Eng. (2018). https://doi.org/10.1007/s13369-017-3059-0

    Article  Google Scholar 

  13. Sahin, A.; Tasdemir, H.M.; Karabulut, A.F.; Gürü, M.: Mechanical and thermal properties of particleboard manufactured from waste Peachnut shell with glass powder. Arab. J. Sci. Eng. 42, 1559–1568 (2017). https://doi.org/10.1007/s13369-017-2427-0

    Article  Google Scholar 

  14. Hepworth, D.G.; Hobson, R.N.; Bruce, D.M.: The use of unretted hemp fibre in composite manufacture. Compos. A Appl. Sci. Manuf. 31, 1279–1283 (2000)

    Google Scholar 

  15. Fuqua, M.A.; Huo, S.; Chad, A.: Ulven natural fibre reinforced composites. Polym. Rev. 52, 259–320 (2012)

    Google Scholar 

  16. Sahu, P.; Gupta, M.K.: Sisal (Agave sisalana) fibre and its polymer-based composites: a review on current developments. J. Reinf. Plast. Compos. 36(24), 1759–1780 (2017)

    Google Scholar 

  17. Yan, L.; Chouw, N.; Jayaraman, K.: Flax fibre and its composites—a review. Compos. Part B: Eng. 56, 296–317 (2014)

    Google Scholar 

  18. Akil, H.; Zamri, M.H.; Osman, M.R.: The use of kenaf fibers as reinforcements in composites. Biofiber Reinf. Compos. Mater. (2015). https://doi.org/10.1533/9781782421276.1.138138-161

    Article  Google Scholar 

  19. Low, I.M.; Schmidt, P.; Lane, J.: Properties of rubber-modified cellulose-fiber-epoxy laminate. J. Appl. Polym. Sci. 54, 2191–2193 (1994)

    Google Scholar 

  20. Karnani, R.; Krishnan, M.; Narayan, R.: Biofiber-reinforced polypropylene composite. Polym. Eng. Sci. 37, 476–483 (1997)

    Google Scholar 

  21. Ali, A.; Shaker, Z.R.; Khalina, A.: Development of anti-ballistic board from ramie fiber. Polym. Plast. Technol. Eng. 50, 622–634 (2011)

    Google Scholar 

  22. Paukszta, D.; Mańkowski, J.; Kołodziej, J.: Polypropylene (PP) composites reinforced with stinging nettle (Utrica dioica L.) Fiber. J. Nat. Fibers 10, 147–158 (2013)

    Google Scholar 

  23. Bajpai, P.K.; Meena, D.; Vatsa, S.: Tensile behavior of nettle fiber composites exposed to various environments. J. Nat. Fibers 10, 244–256 (2013)

    Google Scholar 

  24. Lanzilao, G.; Goswami, P.; Blackburn, R.S.: Study of the morphological characteristics and physical properties of Himalayan giant nettle (Girardinia diversifolia L.) fibre in comparison with European nettle (Urtica dioica L.) fibre. Mater. Lett. 181, 200–203 (2016)

    Google Scholar 

  25. Bodros, E.; Baley, C.: Study of the tensile properties of stinging nettle fibres (Urtica dioica). Mater. Lett. 62, 2143–2145 (2008)

    Google Scholar 

  26. Zhang, X.; Sun, Z.; Hu, X.: Low temperature fracture toughness of PMMA and crack-tip conditions under flat-tipped cylindrical indenter. Polym. Test. 38, 57–63 (2014)

    Google Scholar 

  27. Marshall, G.P.; Coutts, L.H.; Williams, J.G.: Temperature effects in the fracture of PMMA. J. Mater. Sci. 9, 1409–1419 (1974)

    Google Scholar 

  28. Low, I.M.; Schmidt, P.; Lane, J.: Synthesis and properties of cellulose-fibre/epoxy laminates. J. Mater. Sci. Lett. 14, 170–172 (1995)

    Google Scholar 

  29. Atkins, A.G.; Mai, Y.W.: Elastic and plastic fracture: metals, polymers, ceramics, composites, biological materials. Halsted Press, Ellis Horwood (1985)

    Google Scholar 

  30. Roe, P.J.; Ansell, M.P.: Jute-reinforced polyester composites. J. Mater. Sci. 20, 4015–4020 (1985)

    Google Scholar 

  31. Hughes, M.; Hill, C.A.S.; Hague, J.R.B.: The fracture toughness of bast fibre reinforced polyester composites Part 1 Evaluation and analysis. J. Mater. Sci. 37(21), 4669–4676 (2002)

    Google Scholar 

  32. Roncero, M.B.; Torres, A.L.; Colom, J.F.: The effect of xylanase on lignocellulosic components during the bleaching of wood pulps. Biores. Technol. 96, 21–30 (2005)

    Google Scholar 

  33. Shahat, A.; Hassan, H.M.A.; Azzazy, H.M.E.; El-Sharkawy, E.A.; Abdou, H.M.; Awual, M.R.: Novel hierarchical composite adsorbent for selective lead(II) ions capturing from wastewater samples. Chem. Eng. J. 332, 377–386 (2018). https://doi.org/10.1016/j.cej.2017.09.040

    Article  Google Scholar 

  34. Mazrouaa, A.M.; Mansour, N.A.; Abed, M.Y.; Youssif, M.A.; Shenashen, M.A.; Awual, M.R.: Nano-composite multi-wall carbon nanotubes using poly(p-phenylene terephthalamide) for enhanced electric conductivity. J. Environ. Chem. Eng. 7(2), 103002 (2019). https://doi.org/10.1016/j.jece.2019.103002

    Article  Google Scholar 

  35. Joonobi, M.; Harun, J.; Tahir, P.M.: Characteristic of nanofibers extracted from kenaf core. BioResources 5, 2556–2566 (2010)

    Google Scholar 

  36. Rong, M.Z.; Zhang, M.Q.; Liu, Y.: The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos. Sci. Technol. 61, 1437–1447 (2001)

    Google Scholar 

  37. Usta, M.; Gümüşkaya, E.; Odabaş, S.Z.: Characterization of the crystalline structure in cotton linters cellulose. Cellul. Chem. Technol. J. 37(1–2), 7–18 (2003)

    Google Scholar 

  38. Harby, E.A.; Fragiskos, N.K.: Preliminary notes on using lipase enzyme to remove oil dirty in textile conservation. In: Proceeding 4th International Congress on the Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin, Cairo Egypt

  39. Fan, M.; Fu, F.: Advanced High Strength Natural Fibre Composites in Construction, Bölüm 1/3 Physical and Mechanical Properties of Natural Fibers. Woodhead Publishing, Sawston (2017)

    Google Scholar 

  40. Kumar, N.; Das, D.: Alkali treatment on nettle fibers part II: design of experiment and desirability function approach to study enhancement of tensile properties. J. Text. Inst. 108(8), 1468–1475 (2017). https://doi.org/10.1080/00405000.2016.1257347

    Article  Google Scholar 

  41. Büyükkaya, K.: Investigation of mechanical behavior of nettle filled hybrid composites of nettle fiber-hazelnut shell. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji 5(4), 133–144 (2017)

    Google Scholar 

  42. Joseph, S.; Sreekalab, M.S.; Oommena, Z.; Koshyc, P.; Thomas, S.: A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres. Compos. Sci. Technol. 62, 1857–1868 (2002)

    Google Scholar 

  43. Athijayamani, A.; Thiruchitrambalam, M.; Manikandan, V.; Pazhanivel, B.: Mechanical properties of natural fibers reinforced polyester hybrid composite. Int. J. Plast. Technol. 14, 101–116 (2010)

    Google Scholar 

  44. Yan, L.; Chouw, N.; Yuan, X.: Improving the mechanical properties of natural fibre fabric reinforced epoxy composites by alkali treatment. J. Reinf. Plast. Compos. 31(6), 425–437 (2012)

    Google Scholar 

  45. Liu, Q.; Hughes, M.: The fracture behaviour and toughness of woven flax fibre reinforced epoxy. Compos. Part A: Appl. Sci. Manuf. 39(10), 1644–1652 (2008). https://doi.org/10.1016/j.compositesa.2008.07.008

    Article  Google Scholar 

  46. Ku, H.; Wang, H.; Pattarachaiyakoop, N.: A review on the tensile properties of natural fiber reinforced polymer composite. Compos. Part B: Eng. 42, 856–873 (2011)

    Google Scholar 

  47. Malkapuram, R.; Kumar, V.; Negi, Y.S.: Recent development in natural fiber reinforced polypropylene composites. J. Reinf. Plast. Compos. 28, 1169–1189 (2009)

    Google Scholar 

  48. Ahmad, I.; Baharum, A.; Abdullah, I.: Effect of extrusion rate and fiber loading on mechanical properties of Twaron fiber-thermoplastic natural rubber (TPNR) composite. J. Reinf. Plast. Compos. 25, 957–965 (2006)

    Google Scholar 

  49. Gümüskaya, E.; Usta, M.; Kirci, H.: The effects of various pulping conditions on crystalline structure of cellulose in cotton linters. Polym. Degrad. Stab. 81, 559–564 (2003)

    Google Scholar 

  50. Gan, Y.: Effect of interface structure on mechanical properties of advanced composite materials. Int. J. Mol. Sci. 10(12), 5115–5134 (2009). https://doi.org/10.3390/ijms10125115

    Article  Google Scholar 

  51. Bueno, M.A.; Aneja, A.P.; Renner, M.: Influence of the shape of fiber cross section on fabric surface characteristics. J. Mater. Sci. 39(2), 557–564 (2004). https://doi.org/10.1023/b:jmsc.0000011511.66614.48

    Article  Google Scholar 

  52. Ornaghi, H.L.; Poletto, M.; Zattera, A.J.: Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers. Cellulose 21, 177–188 (2014)

    Google Scholar 

  53. Poletto, M.; Zattera, A.J.; Santana, R.: Structural differences between wood species: evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J. Appl. Polym. Sci. 126, E337–E344 (2012)

    Google Scholar 

  54. Bergfjord, C.; Holst, B.: A procedure for identifying textile bast fibres using microscopy: flax, nettle/ramie, hemp and jut. Ultramicroscopy 110, 1192–1197 (2010)

    Google Scholar 

  55. Herzog, A.: Mikrophotographischer Atlas der Technisch Wichtigen Pflanzenfasern. Akademie-Verlag, Berlin (1955)

    Google Scholar 

  56. Fidelis, M.E.A.; Pereira, T.V.C.; Gomes, O.D.F.M.: The effect of fiber morphology on the tensile strength of natural fibers. J. Mater. Res. Technol. 2, 149–157 (2013)

    Google Scholar 

  57. Rao, S.; Bhattacharyya, D.K.; Jayaraman, K.; Fernyhough, A.: Manufacturing and recycling of sisal-polypropylene composites. Polym. Polym. Compos. 17(8), 467–479 (2009)

    Google Scholar 

  58. Bensadoun, F.; Depuydt, D.; Baets, J.; Verpoest, I.; van Vuure, A.V.: Low velocity impact properties of flax composites. Compos. Struct. 176, 933–944 (2017). https://doi.org/10.1016/j.compstruct.2017.05.005

    Article  Google Scholar 

  59. Thomason, J.L.: The influence of fibre length, diameter and concentration on the impact performance of long glass-fibre reinforced polyamide 6, 6. Compos. A. Appl. Sci. Manuf. 40, 114–124 (2009). https://doi.org/10.1016/j.compositesa.2008.10.013

    Article  Google Scholar 

  60. Bax, B.; Müssig, J.: Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos. Sci. Technol. 68, 1601–1607 (2008). https://doi.org/10.1016/j.compscitech.2008

    Article  Google Scholar 

  61. Huda, M.S.; Drzal, L.T.; Mohanty, A.K.: Effect of fiber surface-treatments on the properties of laminated biocomposites from poly (lactic acid)(PLA) and kenaf fibers. Compos. Sci. Technol. 68, 424–432 (2008)

    Google Scholar 

  62. Perelló, B.D.; Garcia-Sanoguera, D.; Gimeno, F.O.Á.; Boronat, T.; Gimeno, B.R.A.: Use of eco-friendly epoxy resins from renewable resources as potential substitutes of petrochemical epoxy resins for ambient cured composites with flax reinforcements. Polym. Compos. 33(5), 683–692 (2012)

    Google Scholar 

  63. Guo, C.; Ma, L.C.; Sun, C.; Liping Li, L.: Influence of high loaded wood flour and coupling agent (m-TMI-g-PP) content on properties of wood flour/polypropylene. J. Adhes. Sci. Technol. 27(8), 912–923 (2013)

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the support of Giresun University’s Scientific Research Projects Office (FEN-BAP-A-250414-76).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenan Büyükkaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Büyükkaya, K., Demirer, H. Examining the Mechanical and Thermomechanical Properties of Polymethylmethacrylate Composites Reinforced with Nettle Fibres. Arab J Sci Eng 45, 665–674 (2020). https://doi.org/10.1007/s13369-019-04136-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04136-7

Keywords

Navigation