Skip to main content
Log in

Carbonized Charcoal‐Loaded PVDF Polymer Composite: A Promising EMI Shielding Material

  • Research Article - Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Microcomposites of charcoal‐loaded polyvinylidene fluoride (PVDF) polymer have been prepared by solution mixing and hot compression method for electromagnetic interference (EMI) shielding applications. Electrical conductivity, dielectric properties and EMI shielding efficiency of these composites have been studied in the X-band (8.2–12.4 GHz) frequency region. An increase in the conductivity from ~ 1.47 × 10−14 S/cm for pure PVDF to 23.2 S/cm for 80 wt.% charcoal‐loaded PVDF composite is obtained with improved mechanical strength. High effective dielectric constant \( ( \in^{'} ) \) value of 116.06 and dielectric loss \( ( \in^{{\prime \prime }} ) \) of 233.59 are obtained at a frequency of 8.2 GHz. A high value of total shielding (SET), shielding due to absorption (SEA) and shielding due to reflection (SER) are measured to be 70.1 dB, 59.3 dB and 9.2 dB, respectively, for 80 wt.% charcoal‐incorporated PVDF polymer composite, respectively. Dispersion studies suggest that SET of the charcoal‐loaded PVDF polymer composite is independent of frequency and is mainly absorption dominant which makes it a suitable material for EMI shielding applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Arora, M.; Wahab, M.; Saini, P.: Permittivity and electromagnetic interference shielding investigations of activated charcoal loaded acrylic coating compositions. J. Polym. 2014, 1–7 (2014)

    Google Scholar 

  2. Ott, H.W.: Electromagnetic compatibility engineering. Wiley, New York (2011)

    Google Scholar 

  3. Chung, D.: Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39(2), 279–285 (2001)

    Google Scholar 

  4. Joseph, N.; Sebastian, M.T.: Electromagnetic interference shielding nature of PVDF–carbonyl iron composites. Mater. Lett. 90, 64–67 (2013)

    Google Scholar 

  5. Yousefi, N.; Sun, X.; Lin, X.; Shen, X.; Jia, J.; Zhang, B.; Tang, B.; Chan, M.; Kim, J.K.: Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26(31), 5480–5487 (2014)

    Google Scholar 

  6. Geetha, S.; Satheesh Kumar, K.; Rao, C.R.; Vijayan, M.; Trivedi, D.: EMI shielding: methods and materials—a review. J. Appl. Polym. Sci. 112(4), 2073–2086 (2009)

    Google Scholar 

  7. Bek, Y.K.; Hamdia, K.; Rabczuk, T.; Könke, C.: Micromechanical model for polymeric nano-composites material based on SBFEM. Compos. Struct. 194, 516–526 (2018)

    Google Scholar 

  8. Koniuszewska, A.G.; Kaczmar, J.W.: Application of polymer based composite materials in transportation. Prog Rubber Plast Recycl Technol 32(1), 1–24 (2016)

    Google Scholar 

  9. Alderliesten, R.; Benedictus, R.: Fiber/metal composite technology for future primary aircraft structures. J. Aircr. 45(4), 1182–1189 (2008)

    Google Scholar 

  10. Curcio, M.; Picci, N.: Polymer in agriculture: a review. Am. J. Agric. Biol. Sci 3, 299–314 (2008)

    Google Scholar 

  11. Keller, T.: Recent all-composite and hybrid fibre-reinforced polymer bridges and buildings. Prog. Struct. Mater. Eng. 3(2), 132–140 (2001)

    Google Scholar 

  12. Yamada, T.; Otsubo, K.; Makiura, R.; Kitagawa, H.: Designer coordination polymers: dimensional crossover architectures and proton conduction. Chem. Soc. Rev. 42(16), 6655–6669 (2013)

    Google Scholar 

  13. Zhang, Q.; Prabhu, A.; San, A.; Al-Sharab, J.F.; Levon, K.: A polyaniline based ultrasensitive potentiometric immunosensor for cardiac troponin complex detection. Biosens. Bioelectron. 72, 100–106 (2015)

    Google Scholar 

  14. Pandey, P.C.: A new conducting polymer-coated glucose sensor. J Chem Soc Faraday Trans 1 Phys Chem Condens Phas 84(7), 2259–2265 (1988)

    Google Scholar 

  15. Alvi, F.; Ram, M.K.; Basnayaka, P.A.; Stefanakos, E.; Goswami, Y.; Kumar, A.: Graphene–polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor. Electrochim. Acta 56(25), 9406–9412 (2011)

    Google Scholar 

  16. Zhou, Y.; Zhang, Q.; Wu, J.; Xi, C.; Meyerhoff, M.E.: Synthesis and characterization of a fluorinated S-nitrosothiol as the nitric oxide donor for fluoropolymer-based biomedical device applications. J. Mater. Chem. B 6(38), 6142–6152 (2018)

    Google Scholar 

  17. Zhang, Q.; Majumdar, H.S.; Kaisti, M.; Prabhu, A.; Ivaska, A.; Österbacka, R.; Rahman, A.; Levon, K.: Surface functionalization of ion-sensitive floating-gate field-effect transistors with organic electronics. IEEE Trans. Electron Dev. 62(4), 1291–1298 (2015)

    Google Scholar 

  18. Bai, H.; Shi, G.: Gas sensors based on conducting polymers. Sensors 7(3), 267–307 (2007)

    Google Scholar 

  19. Yuan, B.; Yu, L.; Sheng, L.; An, K.; Zhao, X.: Comparison of electromagnetic interference shielding properties between single-wall carbon nanotube and graphene sheet/polyaniline composites. J. Phys. D Appl. Phys. 45(23), 235108 (2012)

    Google Scholar 

  20. Arjmand, M.; Apperley, T.; Okoniewski, M.; Sundararaj, U.: Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon 50(14), 5126–5134 (2012)

    Google Scholar 

  21. Al-Saleh, M.H.; Sundararaj, U.: A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1), 2–22 (2009)

    Google Scholar 

  22. Yan, D.X.; Pang, H.; Li, B.; Vajtai, R.; Xu, L.; Ren, P.G.; Wang, J.H.; Li, Z.M.: Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015)

    Google Scholar 

  23. Gelves, G.A.; Al-Saleh, M.H.; Sundararaj, U.: Highly electrically conductive and high performance EMI shielding nanowire/polymer nanocomposites by miscible mixing and precipitation. J. Mater. Chem. 21(3), 829–836 (2011)

    Google Scholar 

  24. Al-Saleh, M.H.; Gelves, G.A.; Sundararaj, U.: Copper nanowire/polystyrene nanocomposites: lower percolation threshold and higher EMI shielding. Compos. A Appl. Sci. Manuf. 42(1), 92–97 (2011)

    Google Scholar 

  25. Hu, M.; Gao, J.; Dong, Y.; Li, K.; Shan, G.; Yang, S.; Li, R.K.-Y.: Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding. Langmuir 28(18), 7101–7106 (2012)

    Google Scholar 

  26. Yang, Y.; Gupta, M.C.; Dudley, K.L.; Lawrence, R.W.: Conductive carbon nanofiber–polymer foam structures. Adv. Mater. 17(16), 1999–2003 (2005)

    Google Scholar 

  27. Li, N.; Huang, Y.; Du, F.; He, X.; Lin, X.; Gao, H.; Ma, Y.; Li, F.; Chen, Y.; Eklund, P.C.: Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 6(6), 1141–1145 (2006)

    Google Scholar 

  28. Yang, Y.; Gupta, M.; Dudley, K.: Studies on electromagnetic interference shielding characteristics of metal nanoparticle-and carbon nanostructure-filled polymer composites in the Ku-band frequency. Micro Nano Lett. 2(4), 85–89 (2007)

    Google Scholar 

  29. Eswaraiah, V.; Sankaranarayanan, V.; Ramaprabhu, S.: Functionalized graphene–PVDF foam composites for EMI shielding. Macromol. Mater. Eng. 296(10), 894–898 (2011)

    Google Scholar 

  30. McCullough, R.; Ewbank, P.; Skotheim, T.: Handbook of Conducting Polymers, p. 25. Marcel Dekker Inc., New York (1998)

    Google Scholar 

  31. Kim, K.; Cho, S.J.; Kim, S.T.; Chin, I.-J.; Choi, H.J.: Formation of two-dimensional array of multiwalled carbon nanotubes in polystyrene/poly (methyl methacrylate) thin film. Macromolecules 38(26), 10623–10626 (2005)

    Google Scholar 

  32. Li, S.; Li, D.: Electrically conductive charcoal powder/ultrahigh molecular weight polyethylene composites. Mater. Lett. 137, 409–412 (2014)

    Google Scholar 

  33. Nishimiya, K.; Hata, T.; Imamura, Y.; Ishihara, S.: Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy. J. Wood Sci. 44(1), 56–61 (1998)

    Google Scholar 

  34. Nishimiya, K.; Hata, T.; Kikuchi, H.; Imamura, Y.: Effect of aluminum compound addition on graphitization of wood charcoal by direct electric pulse heating method. J. Wood Sci. 50(2), 177–181 (2004)

    Google Scholar 

  35. Al-Saleh, M.H.; Saadeh, W.H.; Sundararaj, U.: EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60, 146–156 (2013)

    Google Scholar 

  36. Tanaka, T.; Kozako, M.; Fuse, N.; Ohki, Y.: Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 12(4), 669–681 (2005)

    Google Scholar 

  37. Smith, R.; Liang, C.; Landry, M.; Nelson, J.; Schadler, L.: The mechanisms leading to the useful electrical properties of polymer nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 15(1), 187–196 (2008)

    Google Scholar 

  38. Barber, P.; Balasubramanian, S.; Anguchamy, Y.; Gong, S.; Wibowo, A.; Gao, H.; Ploehn, H.J.; Zur Loye, H.-C.: Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2(4), 1697–1733 (2009)

    Google Scholar 

  39. Zakrevskii, V.; Sudar, N.; Zaopo, A.; Dubitsky, Y.A.: Mechanism of electrical degradation and breakdown of insulating polymers. J. Appl. Phys. 93(4), 2135–2139 (2003)

    Google Scholar 

  40. Ieda, M.: Dielectric breakdown process of polymers. IEEE Trans. Electr. Insul. 15(3), 206–224 (1980)

    Google Scholar 

  41. Al-Saleh, M.H.; Sundararaj, U.: Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47(7), 1738–1746 (2009)

    Google Scholar 

  42. Arjmand, M.; Chizari, K.; Krause, B.; Pötschke, P.; Sundararaj, U.: Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites. Carbon 98, 358–372 (2016)

    Google Scholar 

  43. Kumaran, R.; Alagar, M.; Dinesh Kumar, S.; Subramanian, V.; Dinakaran, K.: Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thinfilms. Appl. Phys. Lett. 107(11), 113107 (2015)

    Google Scholar 

  44. Kumar, G.S.; Vishnupriya, D.; Joshi, A.; Datar, S.; Patro, T.U.: Electromagnetic interference shielding in 1–18 GHz frequency and electrical property correlations in poly (vinylidene fluoride)—multi-walled carbon nanotube composites. Phys. Chem. Chem. Phys. 17(31), 20347–20360 (2015)

    Google Scholar 

  45. Kamal Halder, K.; Sonker, R.K.; Sachdev, V.; Tomar, M.; Gupta, V.: Study of electrical, dielectric and EMI shielding behavior of copper metal, copper ferrite and PVDF composite. Integr. Ferroelectr. 194(1), 80–87 (2018)

    Google Scholar 

  46. Wang, S.-Y.; Hung, C.-P.: Electromagnetic shielding efficiency of the electric field of charcoal from six wood species. J. Wood Sci. 49(5), 450–454 (2003)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Department of Science and Technology (DST), Government of India, for financial support, and thankful to Prof. R. Nagrajan, Department of Chemistry, University of Delhi, for providing TGA facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halder, K.K., Tomar, M., Sachdev, V.K. et al. Carbonized Charcoal‐Loaded PVDF Polymer Composite: A Promising EMI Shielding Material. Arab J Sci Eng 45, 465–474 (2020). https://doi.org/10.1007/s13369-019-04054-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04054-8

Keywords

Navigation