Skip to main content
Log in

Header Design Optimization of Mini-channel Heat Sinks Using CuO–H2O and Al2O3–H2O Nanofluids for Thermal Management

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Heat sinks are used in thermal management of the electronic devices such as supercomputers, data centres and batteries and fuel cells. Particularly, cooling requirements of microprocessors increase due to an increase in miniaturization and computational requirements. Efficient working of heat sinks is important to maintain certain temperature by dissipating heat to the environment. Development of efficient heat transfer mechanism is dependent on the highly conductive working fluids and heat transfer surfaces with high heat transfer coefficients. In the present investigation, four different geometries and three working fluids have been investigated to optimize the heat dissipation rate. In the present research, the thermal and hydraulic performance of heat sinks has been investigated. Experiments and numerical simulations have been conducted at different flow rates for different designs of heat sinks using water and CuO-, Al2O3-based nanofluids. Volume concentrations of 0.67% and 0.4% were used for Al2O3–H2O and CuO–H2O nanofluids, respectively, and 2.5 g each of aluminium and copper oxides nanoparticles were used. The simulated base temperature was 110 °C through mice element for the experimentation. Optimized configuration of the heat sink was obtained using water, and experiments were performed to examine the heat transfer enhancement using water and nanofluids. The main purpose of this investigation is to minimize the base temperature of the heat sink and to increase the heat transfer rate. The minimum base temperatures obtained for Al2O3–H2O nanofluids and water were 43.4 °C and 45.2 °C, respectively, on the mini-channel heat sink with 0.5 mm fin spacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

:

Heat transfer rate (W)

:

Mass flow rate (kg/s)

C p :

Specific heat (kJ/kg, °C)

T out :

Fluid outlet temperature (°C)

T in :

Fluid inlet temperature (°C)

h :

Heat transfer coefficient

A r :

Heat transfer area (mm2)

LMTD:

Log of mean temperature difference (°C)

T b :

Base temperature (°C)

∅:

Volume fraction

\( w_{{{\mathrm{np}}}} \) :

Weight of nanoparticle (g)

ρ nf :

Density of nanoparticle (kg/m3)

ρ bf :

Density of base fluid (kg/m3)

\( C_{{{\mathrm{nf}}}} \) :

Specific heat capacity of nanofluids (J/K)

\( \mu_{{{\mathrm{nf}}}} \) :

Viscosity of nanofluids [(N s)/m2]

Rth:

Thermal resistance (°C/W)

\( \nabla \cdot T \) :

Temperature in x, y, z directions (°C)

\( \nabla \cdot \overrightarrow {V} \) :

Velocity in x, y, z directions, respectively (m/s)

References

  1. Garimella, S.V.; Yeh, L.-T.; Persoons, T.: Thermal Management challenges in telecommunication systems and data centers. IEEE Trans. Compon. Packag. Manuf. Technol. 2, 1307–1316 (2012)

    Google Scholar 

  2. Garimella, S.V.; Persoons, T.; Weibel, J.; Yeh, L.-T.: Technological drivers in data centers and telecom systems: multiscale thermal, electrical and energy management. Appl. Energy 107, 66–80 (2013)

    Google Scholar 

  3. Whitney, J.; Delforge, P.: Data Center Efficiency Assessment. Natural Resources Defense Council, New York (2014)

    Google Scholar 

  4. Ebrahimi, K.; Jones, G.F.; Fleischer, A.S.: A review of data center cooling technology, operating conditions and the corresponding low grade waste heat recovery opportunities. Renew. Sustain. Energy Rev. 31, 622–638 (2014)

    Google Scholar 

  5. Rao, Z.; Wang, Q.; Huang, C.: Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system. Appl. Energy 164, 659–669 (2016). https://doi.org/10.1016/j.apenergy.2015.12.021

    Article  Google Scholar 

  6. Huo, Y.; Rao, Z.; Liu, X.; Zhao, J.: Investigationofpowerbatterythermalmanagement by using mini-channel cold plate. Energy Convers. Manag. 89, 387–395 (2015). https://doi.org/10.1016/j.enconman.2014.10.015

    Article  Google Scholar 

  7. Ju, H.; Meng, H.; Wang, C.-Y.: A single-phase, non-isothermal model for PEM fuel cells. Int. J. Heat Mass Transf. 48, 1303–1315 (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2004.10.004

    Article  MATH  Google Scholar 

  8. Kandlikar, S.G.; Garimella, S.; Li, D.; Colin, S.; King, M.R.: Heat Transfer and Fluid Flow in Minichannels and Microchannels, 2nd edn. Butterworth-Heinemann, Oxford (2013)

    Google Scholar 

  9. Yeh, L.T.: Review of heat transfer technologies in electronic equipment. J. Electron. Packag. 117, 333–339 (1995)

    Google Scholar 

  10. Panão, M.R.O.; Guerreiro, J.P.P.V.; Moreieira, A.L.N.: Microprocessor cooling based on an intermittent multijet spray system. Int. J. Heat Mass Transf. 55, 2854–2863 (2012)

    Google Scholar 

  11. Sidik, A.C.; et al.: An overview of passive techniques for heat transfer augmentation in microchannel heat sink. Int. Commun. Heat Mass Transf. 88, 74–83 (2017)

    Google Scholar 

  12. Wang, X.D.; An, B.; Xu, J.L.: Optimal geometric structure for nanofluid-cooled microchannel heat sink under various constraint conditions. Energy Convers. Manag. 65, 528–538 (2013)

    Google Scholar 

  13. Kim, S.: Methods for thermal optimization of microchannel heat sinks. Heat Transf. Eng. 7632(251), 37–49 (2010)

    Google Scholar 

  14. Kar, S.P.; Rath, P.: A phase density based enthalpy model for laser assisted phase change process. Int. Commun. Heat Mass Transf. 40(1), 12–18 (2013)

    Google Scholar 

  15. Naphon, P.; Wongwises, S.; Wiriyasart, S.: Application of two-phase vapor chamber technique for hard disk drive cooling of PCs. Int. Commun. Heat Mass Transfer 40(1), 32–35 (2013)

    Google Scholar 

  16. Keshavarz Moraveji, M.; Mohammadi Ardehali, R.; Ijam, A.: CFD investigation of nanofluid effects (cooling performance and pressure drop) in mini-channel heat sink. Int. Commun. Heat Mass Transf. 40(1), 58–66 (2013)

    Google Scholar 

  17. Kefayati, G.H.R.: Effect of a magnetic field on natural convection in an open cavity subjugated to water/alumina nanofluid using Lattice Boltzmann method. Int. Commun. Heat Mass Transfer 40(1), 67–77 (2013)

    Google Scholar 

  18. Mohammed, H.A.; Hasan, H.A.; Wahid, M.A.: Heat transfer enhancement of nanofluids in a double pipe heat exchanger with louvered strip inserts. Int. Commun. Heat Mass Transf. 40(1), 36–46 (2013)

    Google Scholar 

  19. Chein, R.; Chen, J.: Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance. Int. J. Therm. Sci. 48(8), 1627–1638 (2009)

    Google Scholar 

  20. Gao, J.W.; Zheng, R.T.; Ohtani, H.; Zhu, D.S.; Chen, G.: Experimental investigation of heat conduction mechanisms in nanofluids. Clue on clustering. Nano Lett. 9(12), 4128–4132 (2009)

    Google Scholar 

  21. Shoukat, A.A.; Khan, M.Z.; Israr, A.; Anwar, M.: “Comparison of heat sink’s fin-spacing using CuO–H2O based nanofluids for high heat generating microprocessor: an experimental study. J. Taibah Univ. Sci. (2017). https://doi.org/10.1080/16583655.2018.1473945

    Article  Google Scholar 

  22. Dawoud, B.; Amer, E.; Gross, D.M.: Experimental investigation of an adsorptive thermal energy storage. Int. J. Energy Res. 31, 135–147 (2007)

    Google Scholar 

  23. Hung, T.C.; Huang, Y.X.; Yan, W.M.: Thermal performance analysis of porous-microchannel heat sinks with different configuration designs. Int. J. Heat Mass Transf. 66, 235–243 (2013)

    Google Scholar 

  24. Animasaun, I.L.; Sandeep, N.: Buoyancy induced model for the flow of 36 nm alumina–water nanofluid along upper horizontal surface of a paraboloid of revolution with variable thermal conductivity and viscosity. Powder Technol. 301, 858–867 (2016). https://doi.org/10.1016/j.powtec.2016.07.023

    Article  Google Scholar 

  25. Koriko, O.K.; Omowaye, A.J.; Sandeep, N.; Animasaun, I.L.: Analysis of boundary layer formed on an upper horizontal surface of a paraboloid of revolution within nanofluid flow in the presence of thermophoresis and Brownian motion of 29 nm CuO. Int. J. Mech. Sci. 124–125, 22–36 (2017). https://doi.org/10.1016/j.ijmecsci.2017.02.020

    Article  Google Scholar 

  26. Animasaun, I.L.: 47 nm alumina–water nanofluid flow within boundary layer formed on upper horizontal surface of paraboloid of revolution in the presence of quartic autocatalysis chemical reaction. Alex. Eng. J. 55(3), 2375–2389 (2016). https://doi.org/10.1016/j.aej.2016.04.030

    Article  Google Scholar 

  27. Animasaun, I.L.; Mahanthesh, B.; Jagun, A.O.; Bankole, T.D.; Sivaraj, R.; Shah, Nehad Ali; Saleem, S.: Significance of lorentz force and thermoelectric on the flow of 29 nm CuO–water nanofluid on an upper horizontal surface of a paraboloid of revolution. J. Heat Transf. 141(2), 022402 (2018). https://doi.org/10.1115/1.4041971

    Article  Google Scholar 

  28. Animasaun, I.L.; Koriko, O.K.; Adegbie, K.S.; Babatunde, H.A.; Ibraheem, R.O.; Sandeep, N.; Mahanthesh, B.: Comparative analysis between 36 nm and 47 nm alumina–water nanofluid flows in the presence of Hall effect. J. Therm. Anal. Calorim. 135(2), 873–886 (2018). https://doi.org/10.1007/s10973-018-7379-4

    Article  Google Scholar 

  29. Khan, W.A.: Modeling of Fluid Flow and Heat Transfer for Optimization of Pin-Fin Heat Sinks. University of Waterloo, Waterloo (2004)

    Google Scholar 

  30. Wan, Z.; Joshi, Y.K.: Pressure drop and heat transfer characteristics of pin fin enhanced microgaps in single phase microfluidic cooling. Int. Mech. Eng. Congress Expos. 1–8 (2013)

  31. Dixit, T.; Ghosh, I.: Low Reynolds number thermo-hydraulic characterization of offset and diamond minichannel metal heat sinks. Exp. Therm. Fluid Sci. 51, 227–238 (2013)

    Google Scholar 

  32. Kim, S.; Choi, E.; Cho, Y.I.: The effect of header shapes on the flow distribution in a manifold for electronic packaging applications. Int. Commun. Heat Mass Transf 22(3), 329–341 (1995)

    Google Scholar 

  33. Markussen, A.; Brix, W.; Elmegaard, B.; Carlsen, H.; Hansen, M.O.L.; Jakobsen, A.: Modelling Refrigerant Distribution in Minichannel Evaporators. Technical University of Denmark (DTU), Denmark (2016)

    Google Scholar 

  34. Naphon, P.; Nakharintr, L.: Heat transfer of nanofluids in the mini-rectangular fin heat sinks. Int. Commun. Heat Mass Transf. 40(1), 25–31 (2013)

    Google Scholar 

  35. Ravi, R.: Phase rule and the azeotrope—a critique and a new interpretation. Int. Commun. Heat Mass Transf. 40(1), 19–24 (2013)

    Google Scholar 

  36. Kumar, B.R.; Sivaraj, R.: MHD viscoelastic fluid non-Darcy flow over a vertical cone and a flat plate. Int. Commun. Heat Mass Transf. 40(1), 1–6 (2013)

    Google Scholar 

  37. Awasthi, M.K.; Asthana, R.: Viscous potential flow analysis of capillary instability with heat and mass transfer through porous media. Int. Commun. Heat Mass Transf. 40(1), 7–11 (2013)

    Google Scholar 

  38. Mohammed, H.A.; Abed, A.M.; Wahid, M.A.: The effects of geometrical parameters of a corrugated channel with in out-of-phase arrangement. Int. Commun. Heat Mass Transf. 40(1), 47–57 (2013)

    Google Scholar 

  39. Jajja, S.; Ali, W.; Ali, H.: Multiwalled carbon nanotube nanofluid for thermal management of high heat generating computer processor. Heat Transf. Asian Res. 43, 653–666 (2013). https://doi.org/10.1002/htj.21107

    Google Scholar 

  40. Tariq, H.A.; Shoukat, A.A.; Anwar, M.; Israr, A.; Ali, H.M.: Water cooled micro-hole cellular structure as a heat dissipation media: an experimental and numerical study. Therm. Sci. Int. Sci. J. 1, 1–13 (2018)

    Google Scholar 

  41. Tariq, H.A.; Shoukat, A.A.; Hassan, M.; Anwar, M.: Thermal management of microelectronic devices using micro-hole cellular structure and nanofluids. J. Therm. Anal. Calorim. 1, 1–12 (2018). https://doi.org/10.1007/s10973-018-7852-0

    Article  Google Scholar 

  42. Saeed, M.; Kim, M.: Heat transfer enhancement using nanofluids (Al2O3–H2O) in mini-channel heatsinks. Int. J. Heat Mass Transf. 120, 671–682 (2018)

    Google Scholar 

  43. Shoukat, A.A.; Shaban, M.; Israr, A.; Shah, O.R.; Khan, M.Z.; Anwar, M.: Stability of nanofluids and their use for thermal management of a microprocessor: an experimental and numerical study. Heat Mass Transf. 54, 2771–2782 (2018)

    Google Scholar 

  44. Garimella, S.V.: Analysis and Optimization of the Thermal Performance of Microchannel Heat Sinks. CTRC Research Publications (2005)

  45. Saeed, M.; Kim, M.-H.: Header design approaches for mini-channel heatsinks using analytical. Appl. Therm. Eng. 110, 1500–1510 (2017). https://doi.org/10.1016/J.APPLTHERMALENG.2016.09.069

    Google Scholar 

  46. Jajja, S.A.; Ali, W.; Ali, H.M.; Ali, A.M.: Water cooled minichannel heat sinks for microprocessor cooling: effect of fin spacing. Appl. Therm. Eng. 64(1–2), 76–82 (2014)

    Google Scholar 

  47. Pradeep, S.T.: Nano Fluids; Science and Technology, 5th edn. Wiley, Hoboken (2007)

    Google Scholar 

  48. Albadr, J.; Tayal, S.; Alasadi, M.: Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations. Case Stud. Therm. Eng. 1(1), 38–44 (2013)

    Google Scholar 

  49. Mangrulkar, C.K.; Kriplani, V.M.; Dhoble, A.S.: Experimental investigation of convective heat transfer enhancement using alumina/water and copper oxide/water nanofluids. Therm Sci. 2015(5), 1–12 (2015)

    Google Scholar 

  50. Peyghambarzadeh, S.M.; Hashemabadi, S.H.; Chabi, A.R.; Salimi, M.: Performance of water based CuO and Al2O3 nanofluids in a Cu–Be alloy heat sink with rectangular microchannels. Energy Convers. Manag. 86, 28–38 (2014)

    Google Scholar 

  51. Rafati, M.; Hamidi, A.A.; Shariati Niaser, M.: Application of nanofluids in computer cooling systems (heat transfer performance of nanofluids). Appl. Therm. Eng. 45–46, 9–14 (2012)

    Google Scholar 

  52. Kamatchi, R.; Venkatachalapathy, S.: Parametric study of pool boiling heat transfer with nanofluids for the enhancement of critical heat flux: a review. Int. J. Therm. Sci. 87, 228–240 (2015)

    Google Scholar 

  53. Wen, D.; Ding, Y.: Formulation of nanofluids for natural convective heat transfer applications. Int. J. Heat Fluid Flow 26(6), 855–864 (2005)

    Google Scholar 

  54. Corcione, M.: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manag. 52(1), 789–793 (2011)

    Google Scholar 

  55. Kakac, S.; Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52(13–14), 3187–3196 (2009)

    MATH  Google Scholar 

  56. Keblinski, P.; Eastman, J.A.; Cahill, D.G.: Nanofluids for thermal transport. Mater. Today 8(6), 36–44 (2005)

    Google Scholar 

  57. Rubio-jimenez, C.A.; Hernandez-guerrero, A.; Cervantes, J.G.; Lorenzini-gutierrez, D.; Gonzalez-valle, C.U.: CFD study of constructal microchannel networks for liquid-cooling of electronic devices. Appl. Therm. Eng. 95, 374–381 (2016)

    Google Scholar 

  58. Xie, X.L.; Tao, W.Q.; He, Y.L.: Numerical study of turbulent heat transfer and pressure drop characteristics in water-cooled minichannel heat sink. J. Electron. Packag. 129, 247–255 (2007)

    Google Scholar 

  59. Anwar, M.; Tariq, H.A.; Shoukat, A.A.; Ali, H.M.; Ali, H.: Numerical study for heat transfer enhancement using CuO–H2O nano-fluids through mini-channel heat sinks for microprocessor cooling. Therm. Sci. Int. Sci. J. 1, 1–13 (2019). https://doi.org/10.2298/TSCI180722022A

    Article  Google Scholar 

  60. Tariq, H.A.; Israr, A.; Khan, Y.I.; Anwar, M.: Numerical and experimental study of cellular structures as a heat dissipation media. Heat Mass Transf. 55, 501–511 (2019). https://doi.org/10.1007/s00231-018-2439-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Adnan Shoukat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M., Shoukat, A.A., Tariq, H.A. et al. Header Design Optimization of Mini-channel Heat Sinks Using CuO–H2O and Al2O3–H2O Nanofluids for Thermal Management. Arab J Sci Eng 44, 10327–10338 (2019). https://doi.org/10.1007/s13369-019-04022-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04022-2

Keywords

Navigation