Skip to main content
Log in

Unsupervised Shape Co-segmentation Based on Transformation Network

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Unsupervised co-segmentation is one type of shape segmentation. It segments a set of 3D shapes into meaningful parts and creates a correspondence between parts simultaneously without any labeled data. Clustering-based co-segmentation is based on the correlation analysis in a descriptor space and has received increasing attention. In this paper, we propose a co-segmentation method, in which a transformation network for data representation is trained by extreme learning machine, embedding shape primitives into more discriminant feature spaces, so as to achieve better segmentation performance. Thus, co-segmentation can be implemented by clustering on lower dimensions based on the transformation network, so the execution is more efficient. Moreover, once the transformation network is trained, it can be applied to the data representation acquisition process without re-computing similarity parameters. In order to create and train the transformation network, the correlation of shape primitives is utilized. Therefore, an affinity matrix construction method based on parameter-free and high-efficiency simplex sparse representation is introduced. This construction of correlation avoids the blindness of parameter setting. Experimental results show that the proposed co-segmentation method is effective and efficient. In addition, it also can deal with incremental co-segmentation when the dataset is expanded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Agathos, A.; Pratikakis, I.; Perantonis, S.; Sapidis, N.; Azariadis, P.: 3D mesh segmentation methodologies for CAD applications. Comput. Aided Des. Appl. 4(6), 827–841 (2007)

    Article  Google Scholar 

  2. Alshamiri, A.K.; Surampudi, B.R.; Singh, A.: A Novel ELM K-Means Algorithm for Clustering, pp. 212–222. Springer, Cham (2015)

    Google Scholar 

  3. Belkin, M.; Niyogi, P.; Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Cai, D.: Litekmeans: the fastest matlab implementation of kmeans. http://www.cad.zju.edu.cn/home/dengcai/Data/code/litekmeans.m (2011)

  5. Charles, R.Q.; Su, H.; Kaichun, M.; Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 77–85 (2017)

  6. Chen, X.; Golovinskiy, A.; Funkhouser, T.: A benchmark for 3D mesh segmentation. In: ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 28, No. 3 (2009)

  7. Coifman, R.R.; Lafon, S.: Diffusion maps. Appl. Comput. Harmonic Anal. 21(1), 5–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gal, R.; Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. 25(1), 130–150 (2006)

    Article  Google Scholar 

  9. Golovinskiy, A.; Funkhouser, T.: Consistent segmentation of 3D models. Comput. Graph. 33(3), 262–269 (2009)

    Article  Google Scholar 

  10. Hilaga, M.; Shinagawa, Y.; Kohmura, T.; Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, SIGGRAPH ’01, pp. 203–212. ACM (2001)

  11. Hu, R.; Fan, L.; Liu, L.: Co-segmentation of 3D shapes via subspace clustering. Comput. Graph. Forum 31(5), 1703–1713 (2012)

    Article  Google Scholar 

  12. Huang, G.; Song, S.; Gupta, J.N.D.; Wu, C.: Semi-supervised and unsupervised extreme learning machines. IEEE Trans. Cybern. 44(12), 2405–2417 (2014)

    Article  Google Scholar 

  13. Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  14. Huang, H.; Kalegorakis, E.; Chaudhuri, S.; Ceylan, D.; Kim, V.; Yumer, E.: Learning local shape descriptors with view-based convolutional neural networks. ACM Trans. Graph. (conditionally accepted) (2017)

  15. Huang, J.; Nie, F.; Huang, H.: A new simplex sparse learning model to measure data similarity for clustering. In: Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15, pp. 3569–3575. AAAI Press (2015)

  16. Huang, Q.; Koltun, V.; Guibas, L.: Joint shape segmentation with linear programming. ACM Trans. Graph. 30(6), 125:1–125:12 (2011)

    Google Scholar 

  17. Huang, Z.; Yu, Y.; Gu, J.; Liu, H.: An efficient method for traffic sign recognition based on extreme learning machine. IEEE Trans. Cybern. 99, 1–14 (2016)

    Google Scholar 

  18. Saul, L.K.; Roweis, S.T.: An introduction to locally linear embedding

  19. Kalogerakis, E.; Averkiou, M.; Maji, S.; Chaudhuri, S.: 3D shape segmentation with projective convolutional networks. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR) (2017)

  20. Kalogerakis, E.; Hertzmann, A.; Singh, K.: Learning 3D mesh segmentation and labeling. ACM Trans. Graph. 29(4), 102:1–102:12 (2010)

    Article  Google Scholar 

  21. Le, T.; Bui, G.; Duan, Y.: A multi-view recurrent neural network for 3D mesh segmentation. Comput. Graph. 66, 103–112 (2017). Shape Modeling International 2017

    Article  Google Scholar 

  22. Li, H.; Sun, Z.; Li, Q.; Shi, J.: 3D shape co-segmentation by combining sparse representation with extreme learning machine. In: Pacific Rim Conference on Multimedia, pp. 570–581. Springer (2018)

  23. Luo, P.; Wu, Z.; Xia, C.; Feng, L.; Ma, T.: Co-segmentation of 3D shapes via multi-view spectral clustering. Vis. Comput. 29(6), 587–597 (2013)

    Article  Google Scholar 

  24. Meng, M.; Xia, J.; Luo, J.; He, Y.: Unsupervised co-segmentation for 3D shapes using iterative multi-label optimization. Comput. Aided Des. 45(2), 312–320 (2013)

    Article  MathSciNet  Google Scholar 

  25. Papadimitriou, C.H.; Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall Inc, Upper Saddle River (1982)

    MATH  Google Scholar 

  26. Peng, C.; Kang, Z.; Yang, M.; Cheng, Q.: Feature selection embedded subspace clustering. IEEE Signal Process. Lett. 23(7), 1018–1022 (2016)

    Article  Google Scholar 

  27. Ren, X.; Malik, J.: Learning a classification model for segmentation. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, ICCV ’03, vol. 2, pp. 10–17. IEEE Computer Society, Washington, DC, USA (2003)

  28. Reuter, M.; Wolter, F.-E.; Peinecke, N.: Laplace–Beltrami spectra as ’Shape-DNA’ of surfaces and solids. Comput. Aided Des. 38(4), 342–366 (2006)

    Article  Google Scholar 

  29. Shamir, A.: A survey on Mesh Segmentation Techniques. Comput. Graph. Forum 27(6), 1539–1556 (2008)

    Article  MATH  Google Scholar 

  30. Shapira, L.; Shalom, S.; Shamir, A.; Cohen-Or, D.; Zhang, H.: Contextual part analogies in 3D objects. Int. J. Comput. Vis. 89(2–3), 309–326 (2010)

    Article  Google Scholar 

  31. Shapira, L.; Shamir, A.; Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24(4), 249 (2008)

    Article  Google Scholar 

  32. Shi, J.; Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  33. Shu, Z.; Qi, C.; Xin, S.; Hu, C.; Wang, L.; Zhang, Y.; Liu, L.: Unsupervised 3D shape segmentation and co-segmentation via deep learning. Comput. Aided Geom. Des. 43, 39–52 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sidi, O.; van Kaick, O.; Kleiman, Y.; Zhang, H.; Cohen-Or, D.: Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Trans. Graph. 30(6), 126:1–126:10 (2011)

    Article  Google Scholar 

  35. van Kaick, O.; Tagliasacchi, A.; Sidi, O.; Zhang, H.; Cohen-Or, D.; Wolf, L.; Hamarneh, G.: Prior knowledge for part correspondence. Comput. Graph. Forum 30(2), 553–562 (2011)

    Article  Google Scholar 

  36. Wang, P.; Gan, Y.; Shui, P.; Yu, F.; Zhang, Y.; Chen, S.; Sun, Z.: 3D shape segmentation via shape fully convolutional networks. Comput. Graph. 70, 128–139 (2018). CAD/Graphics 2017

    Article  Google Scholar 

  37. Wang, Y.; Xie, Z.; Xu, K.; Dou, Y.; Lei, Y.: An efficient and effective convolutional auto-encoder extreme learning machine network for 3D feature learning. Neurocomputing 174, 988–998 (2016)

    Article  Google Scholar 

  38. Wu, Z.; Wang, Y.; Shou, R.; Chen, B.; Liu, X.: SMI 2013: unsupervised co-segmentation of 3D shapes via affinity aggregation spectral clustering. Comput. Graph. 37(6), 628–637 (2013)

    Article  Google Scholar 

  39. Xie, Z.; Xu, K.; Liu, L.; Xiong, Y.: 3D shape segmentation and labeling via extreme learning machine. Comput. Graph. Forum 33(5), 85–95 (2014)

    Article  Google Scholar 

  40. Xu, H.; Dong, M.; Zhong, Z.: Directionally convolutional networks for 3d shape segmentation. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2717–2726 (2018)

  41. Xu, K.; Kim, V.G.; Huang, Q.; Mitra, N.; Kalogerakis, E.: Data-driven shape analysis and processing. In: SIGGRAPH ASIA 2016 Courses, SA ’16, pp. 4:1–4:38. ACM, New York, NY, USA (2016)

  42. Xu, K.; Li, H.; Zhang, H.; Cohen-Or, D.; Xiong, Y.; Cheng, Z.-Q.: Style-content separation by anisotropic part scales. ACM Trans. Graph. 29(6), 184:1–184:10 (2010)

    Article  Google Scholar 

  43. Yi, L.; Su, H.; Guo, X.; Guibas, L.: Syncspeccnn: Synchronized spectral CNN for 3D shape segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6584–6592 (2017)

  44. Zelnik-Manor, L.; Perona, P.: Self-tuning spectral clustering. In: Proceedings of the 17th International Conference on Neural Information Processing Systems, NIPS’04, pp. 1601–1608. MIT Press, Cambridge, MA, USA (2004)

  45. Zhang, Z.; Xu, Y.; Yang, J.; Li, X.; Zhang, D.: A survey of sparse representation: algorithms and applications. IEEE Access 3, 490–530 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments and suggestions. And thanks to all the people who have supported this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Li.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Additional information

This work was supported by Key Natural Science Fund of Nanjing Vocational College of Information Technology (No. YK20170401), National High Technology Research and Development Program of China (No. 2007AA01Z334), National Natural Science Foundation of China (Nos. 61321491 and 61272219), Innovation Fund of State Key Laboratory for Novel Software Technology (Nos. ZZKT2013A12 and ZZKT2016A11), Program for New Century Excellent Talents in University of China (NCET-04-04605), and the University Science Research Project of Jiangsu Province (Grant No. 17KJB520013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Sun, Z. Unsupervised Shape Co-segmentation Based on Transformation Network. Arab J Sci Eng 44, 9029–9041 (2019). https://doi.org/10.1007/s13369-019-04015-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04015-1

Keywords

Navigation