Skip to main content

Advertisement

Log in

Late Holocene Environmental Changes in a Sediment Core from Al-Kharrar Lagoon, Eastern Red Sea Coast, Saudi Arabia

  • Research Article - Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper aims to reconstruct paleoenvironmental conditions and sea-level changes over the last 5500 years. Multi-proxy investigations of sediment types, foraminiferal records, geochemistry parameters and paleotidal elevation changes were conducted on a short sediment core KHAR1 (225 cm long) retrieved from the intertidal area of the Al-Kharrar Lagoon. The sediment age was determined using 14C dating of marine mollusk shells. Results showed that two prominent warming events during AD 750–1500 and 1750–present and a cooling event during AD 1500–1750 were inferred from the variation of benthic foraminiferal composition in core KHAR1. Before 3000 BC interval, the core sediment was deposited under intertidal–subtidal conditions as indicated by the presence of terrestrial sediments (siliciclastic materials), a decrease in subtidal-deep species and a slight drop in the paleotidal elevation about 0.50 cm below the present lowest astronomical tide (LAT). From 3000 to 750 BC, deep-lagoonal species such as S. costigera, T. trigonula, T. serrulata and S. communis dominated this interval and co-occurred with a decrease in coarse sand and an increase in muddy substrates, indicating a prevalence of subtidal environmental conditions during the deposition of this interval. With the beginning of the 1st millennium, symbiotic (epiphytic) species started to increase, reaching the highest abundances between AD 800 and 1500. This increase in symbiotic species during the AD 800–1500 interval coincided with a stepwise increase in sea level and may indicate the prevalence of seagrasses associated with the occurrence of warm water due to climate warming prevailed in/around the lagoon during the deposition of this interval that corresponds to the ‘Medieval Warm Period’ (MWP). The MWP was followed by cooler (arid) conditions of the Little Ice Age (AD 1500–1750), causing a decrease in the abundance of the epiphytic species S. orbiculus and P. planatus (up to 14%) and a drop in paleotidal elevations. After this, the modern warming conditions prevailed until the present day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Plate 1
Plate 2
Fig. 6

Similar content being viewed by others

References

  1. Miebach, A.; Niestrath, P.; Roeser, P.; Litt, T.: Impacts of climate and humans on the vegetation in northwestern Turkey: palynological insights from Lake Iznik since the Last Glacial. Clim. Past Discuss 12, 575–593 (2016)

    Article  Google Scholar 

  2. Almogi-Labin, A.; Hemleben, C.; Meischner, D.; Erlenkeuser, H.: Paleoenvironmental events during the last 13,000 years in the central Red Sea as recorded by pteropoda. Paleoceanography 6(1), 83–98 (1991)

    Article  Google Scholar 

  3. Almogi-Labin, A.; Hemleben, C.; Meischner, D.: Carbonate preservation and climatic changes in the central Red Sea during the last 380 kyr as recorded by pteropods. Mar. Micropaleontol. 33(1–2), 87–107 (1998)

    Article  Google Scholar 

  4. Edelman-Furstenberg, Y.; Almogi-Labin, A.; Hemleben, C.: Palaeoceanographic evolution of the central Red Sea during the late Holocene. Holocene 19(1), 117–127 (2009)

    Article  Google Scholar 

  5. Fenton, M.; Geiselhart, S.; Rohling, E.J.; Hemleben, C.: Aplanktonic zones in the Red Sea. Mar. Micropaleontol. 40, 277–294 (2000)

    Article  Google Scholar 

  6. Berggren, W.A.; Boersma, A.: Late Pleistocene and Holocene planktonic foraminifera from the Red Sea. In: Degens, E.T., Ross, D.A. (eds.) Hot Brines and Recent Heavy Metal Deposits in the Red Sea, pp. 282–298. Springer, Berlin (1969)

    Chapter  Google Scholar 

  7. Chen, Ch: Pteropods in the hot brine sediments of the Red Sea. In: Degens, E.T., Ross, D.A. (eds.) Hot Brines and Recent Heavy Metal Deposits in the Red Sea, pp. 313–316. Springer, Berlin (1969)

    Chapter  Google Scholar 

  8. Deuser, W.G.; Degens, E.T.: 18O/16O and 13C/12C ratios of fossils from the Hot-Brine Deep area of the Central Red Sea. In: Degens, E.T., Ross, D.A. (eds.) Hot Brines and Recent Heavy Metal Deposits in the Red Sea, pp. 336–347. Springer, Berlin (1969)

    Chapter  Google Scholar 

  9. Herman, Y.: Evidence of climatic changes in Red Sea cores. In: Morrison, R.B., Wright, H.E. (eds.) Means of Correlation of Quaternary Successions, Proceedings VII Congress International Association for Quaternary Research, vol. 8, pp. 325–348. University of Utah Press, Salt Lake (1968)

    Google Scholar 

  10. Ivanova, E.V.: Late Quaternary biostratigraphy and paleotemperatures of the Red Sea and the Gulf of Aden based on planktonic foraminifera and pteropods. Mar. Micropaleontol. 9, 335–364 (1985)

    Article  Google Scholar 

  11. Legge, H.L.; Mutterlose, J.; Arz, H.W.: Climatic changes in the northern Red Sea during the last 22,000 years as recorded by calcareous nannofossils. Paleoceanography 21, PA1003 (2006)

    Article  Google Scholar 

  12. Locke, S.; Thunell, R.C.: Paleoceanographic record of the last glacial/interglacial cycle in the Red Sea and Gulf of Aden. Palaeogeogr. Palaeoclimatol. Palaeoecol. 64, 163–187 (1988)

    Article  Google Scholar 

  13. Reiss, Z.; Luz, B.; Almogi-Labin, A.; Halicz, E.; Winter, A.; Wolf, M.; Ross, D.A.: Late Quaternary paleoceanography of the Gulf of Aqaba (Elat). Red Sea. Quat. Res. 14, 294–308 (1980)

    Article  Google Scholar 

  14. Abu-Zied, R.H.; Bantan, R.A.: Hypersaline benthic foraminifera: their environmental controls and usefulness in sea-level reconstruction at the Shuaiba Lagoon, eastern Red Sea, Saudi Arabia. Mar. Micropaleontol. 103, 51–67 (2013)

    Article  Google Scholar 

  15. Abu-Zied, R.H.; Bantan, R.A.: Palaeoenvironment, palaeoclimate and sea-level changes in the Shuaiba Lagoon during the late Holocene (last 3.6 ka), eastern Red Sea coast, Saudi Arabia. Holocene 25(8), 1301–1312 (2015)

    Article  Google Scholar 

  16. Engel, M.; Brückner, H.; Pint, A.; Wellbrock, K.; Ginau, A.; Voss, P.; et al.: The early Holocene humid period in NW Saudi Arabia—Sediments, microfossils and palaeo-hydrological modelling. Quatern. Int. 266, 131–141 (2012)

    Article  Google Scholar 

  17. Abu-Zied, R.H.; Keatings, K.; Flower, R.J.; Leng, M.J.: Benthic foraminifera and their stable isotope composition in sediment cores from Lake Qarun, Egypt: changes in water salinity during the past ~ 500 years. J. Paleolimnol. 45, 167–182 (2011)

    Article  Google Scholar 

  18. Gasse, F.: Hydrological changes in the African tropics since the Last Glacial Maximum. Quat. Sci. Rev. 19, 189–211 (2000)

    Article  Google Scholar 

  19. Brugam, R.B.; McKeever, K.; Kolasa, L.A.: Diatom-inferred water depth reconstruction for an Upper Peninsula, Michigan, lake. J. Paleolimnol. 20, 267–276 (1998)

    Article  Google Scholar 

  20. Fritz, S.C.; Ito, E.; Yu, Z.; Laird, K.R.; Engstrom, D.R.: Hydrologic variation in the northern Great Plains during the last two millennia. Quatern. Res. 53, 175–184 (2000)

    Article  Google Scholar 

  21. Laird, K.R.; Fritz, S.C.; Grimm, E.C.; Mueller, P.G.: Century- scale paleoclimatic reconstruction from Moon Lake, a closed-basin lake in the northern Great Plains. Limnol. Oceanogr. 41, 890–902 (1996)

    Article  Google Scholar 

  22. Moberg, A.; Sonechkin, D.M.; Holmgren, K.; Datsenko, N.M.; Karlén, W.: Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433, 613–617 (2005)

    Article  Google Scholar 

  23. Bond, G.; Showers, W.; Cheseby, M.; Lotti, R.; Almasi, P.; de Menocal, P.; Priore, P.; Cullen, H.; Hadjas, I.; Bonani, G.A.: Pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278(5341), 1257–1266 (1997)

    Article  Google Scholar 

  24. Bond, G.C.; Lotti, R.: Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 267(5200), 1005–1010 (1995)

    Article  Google Scholar 

  25. Abou-Ouf, M.; El-Shater, A.: Black benthic foraminifera in carbonate facies of a coastal sabkha, Saudi Arabian Red Sea coast. J. King Abulaziz Univ. Mar. Sci. 4, 133–141 (1993)

    Google Scholar 

  26. Abou-Ouf, M.: Variation of benthic foraminiferal assemblages in different microenvironments along the shore zone north of Rabigh coast, eastern Red Sea, Saudi Arabia. Neues Jb. Geol. Paläontol. Monat. 3, 129–139 (1996)

    Google Scholar 

  27. Abu-Zied, R.H.; Hariri, M.S.B.: Geochemistry and benthic foraminifera of the nearshore sediments from Yanbu to Al-Lith, eastern Red Sea coast, Saudi Arabia. Arab. J. Geosci. 9(4), 245 (2016)

    Article  Google Scholar 

  28. Al-Dubai, T.A.; Abu-Zied, R.H.; Basaham, A.S.: Diversity and distribution of benthic foraminifera in the Al-Kharrar Lagoon, eastern Red Sea coast, Saudi Arabia. Micropaleontology 63(5), 275–303 (2017)

    Google Scholar 

  29. Hariri, M.S.: Effect of hydrographic conditions on the ecology of benthic foraminifera in two different hypersaline lagoons, eastern Red Sea coast, Kingdom of Saudi Arabia. J. King Abdulaziz Univ. Mar. Sci. 19, 3–13 (2008)

    Article  Google Scholar 

  30. Abu-Zied, R.H.; Bantan, R.A.; Basaham, A.S.; El Mamoney, M.H.; Al-Washmi, H.A.: Composition, distribution, and taphonomy of nearshore benthic foraminifera of the Farasan Islands, southern Red Sea, Saudi Arabia. J. Foramin. Res. 41, 349–362 (2011)

    Article  Google Scholar 

  31. Malamud-Roam, F.; Ingram, B.L.: Late Holocene δ13C and pollen records of paleosalinity from tidal marshes in the San Francisco Bay estuary, California. Quatern. Res. 62, 134–145 (2004)

    Article  Google Scholar 

  32. Mendez, G.; Perez-Arlucea, M.; Stouthamer, E.; Berendsen, H.: Research methods papers the tess-1 suction corer: a new device to extract wet, uncompacted sediments. J. Sediment. Res. 73(6), 1078–1081 (2003)

    Article  Google Scholar 

  33. Al-Dubai, T.A.; Abu-Zied, R.H.; Basaham, A.S.: Present environmental conditions of KL, centre of the eastern Red Sea coast, Saudi Arabia. Arab. J. Geosci. 10, 305 (2017)

    Article  Google Scholar 

  34. Abu-Zied, R.H.; Al-Dubai, T.A.M.; Bantan, R.B.: Environmental conditions of shallow waters alongside the southern Corniche of Jeddah based on benthic foraminifera, physico-chemical parameters and heavy metals. J. Foramin. Res. 46, 149–170 (2016)

    Article  Google Scholar 

  35. Cherif, O.H.; Al-Ghadban, A.; Al-Rifaiy, I.A.: Distribution of foraminifera in the Arabian Gulf. Micropaleontology 43, 253–280 (1997)

    Article  Google Scholar 

  36. Haig, D.: Miliolid foraminifera from inner neritic and mud facies of the Papuan Lagoon. J. Foramin. Res. 18, 203–236 (1988)

    Article  Google Scholar 

  37. Hottinger, L., Halicz, E., Reiss, Z.: Recent foraminiferida, Gulf of Aqaba, Red Sea. Opera Academia Scientiarum Artium Slovenica, Classis IV: Historia Naturalis, 33. Paleontological Institute “Ivan Rakovec”, p. 3 (1993)

  38. Loeblich, A.R.; Tappan, H.: Foraminiferal Genera and Their Classification, 2v edn. Van Nostrand Reinhold, New York (1987)

    Google Scholar 

  39. Heiri, O.; Lotter, A.F.; Lemcke, G.: Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol. 25, 101–110 (2001)

    Article  Google Scholar 

  40. Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Ramsey, C.B.; Grootes, P.M.: IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4), 1869–1887 (2013)

    Article  Google Scholar 

  41. Hammer, Ø.; Harper, D.A.T.; Ryan, P.D.: Past: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001)

    Google Scholar 

  42. Al-Dubai, T.A.: Modern and late Holocene environmental conditions of Al-Kharrar Lagoon, central Red Sea, Saudi Arabia: Palaeoclimatic inferences. PhD Thesis, Faculty of Marine Science‏,‏ King Abduaziz University (2018)

  43. Juggins, S.: C2: Software for Ecology and Palaeoecological Data Analysis and Visualisation (user guide version 1.5). Newcastle upon Tyne: Newcastle University, 77 (2007). https://www.staff.ncl.ac.uk/stephen.juggins/software/code/C2.pdf

  44. Arz, H.W.; Lamy, F.; Patzold, J.; Müller, P.; Prins, M.: Mediterranean moisture source for an early-Holocene humid period in the northern Red Sea. Science 300, 118–121 (2003)

    Article  Google Scholar 

  45. Burns, S.J.; Matter, A.; Frank, N.; Mangini, A.: Spleleothem-based palaeoclimate record from northern Oman. Geology 26, 499–502 (1998)

    Article  Google Scholar 

  46. Gasse, F.: Diatom-inferred salinity and carbonate oxygen isotopes in Holocene waterbodies of the Western Sahara and Sahel (Africa). Quatern. Sci. Rev. 21, 737–767 (2002)

    Article  Google Scholar 

  47. Hoelzmann, P.; Kruse, H.J.; Rottinger, F.: Precipitation estimates for the eastern Saharan palaeomonsoon based on a water balance model of the West Nubian palaeolake basin. Global Planet. Change 26, 105–120 (2000)

    Article  Google Scholar 

  48. Neff, U.; Burns, S.J.; Mangini, A.; Mudelsee, M.; Fleitmann, D.; Matter, A.: Strong coincidence between solar variability and the monsoon in Oman between 9 to 6 kyr ago. Nature 411, 290–293 (2001)

    Article  Google Scholar 

  49. DeMenocal, P.; Ortiz, J.; Guilderson, T.; Sarnthein, M.: Coherent high and low-latitude variability during the Holocene warm period. Science 288, 2198–2202 (2000)

    Article  Google Scholar 

  50. Forderer, M.; Langer, M.R.: Atlas of benthic foraminifera from coral reefs of the Raja Ampat Archipelago (Irian Jaya, Indonesia). Micropaleontology 64(1–2), 1–170 (2018)

    Google Scholar 

  51. Semeniuk, T.A.: Epiphytic FORAMINIFera along a climatic gradient, Western Australia. J. Foramin. Res. 31(3), 191–200 (2001)

    Article  Google Scholar 

  52. Altaba, C.R.: Climate warming and Mediterranean seagrass. Nat. Clim. Change 3, 2–3 (2013)

    Article  Google Scholar 

  53. Cronin, T.M.; Dwyer, G.S.; Kamiya, T.; Schwede, S.; Willard, D.A.: Medieval warm period, little ice age and 20th century temperature variability from Chesapeake Bay. Global Planet. Change 36, 17–29 (2003)

    Article  Google Scholar 

  54. Kaniewski, D.; Van Campo, E.; Paulissen, E.; Weiss, H.; Bakker, J.; Rossignol, I.; Van Lerberghe, K.: The medieval climate anomaly and the Little Ice Age in coastal Syria inferred from pollen-derived palaeoclimatic patterns. Global Planet. Change 78, 178–187 (2011)

    Article  Google Scholar 

  55. Ljungqvist, F.C.; Krusic, P.J.; Brattström, G.; Sundqvist, H.S.: Northern Hemisphere temperature patterns in the last 12 centuries. Clim. Past 8(1), 227–249 (2012)

    Article  Google Scholar 

  56. Ljungqvist, F.C.: A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia. Geografiska Annaler Ser. A Phys. Geography 92, 339–351 (2010)

    Article  Google Scholar 

  57. Quamar, M.F.; Chauhan, M.S.: Signals of medieval warm period and little ice age from southwestern Madhya Pradesh (India): a pollen-inferred Late-Holocene vegetation and climate change. Quatern. Int. 325, 74–82 (2013)

    Article  Google Scholar 

  58. Sheffield, J.; Wood, E.F.; Roderick, M.L.: Little change in global drought over the past 60 years. Nature 491, 435–440 (2012)

    Article  Google Scholar 

  59. Fleitmann, D.; Matter, A.; Pint, J.; Shanti, M.A.: The Speleothem Record of Climate Change in Saudi Arabia. Saudi Geological Survey Open-File Report, SGS-OF-2004-08. Saudi Geological Survey, Jeddah (2004)

    Google Scholar 

  60. Hurrell, J.W.; Van Loon, H.: Decadal variations in climate associated with the north Atlantic oscillation. Clim. Change 36, 301–326 (1997)

    Article  Google Scholar 

  61. Hurrell, J.W.: Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys. Res. Lett. 23, 665–668 (1996)

    Article  Google Scholar 

  62. Riese, S.G.; Ashley, G.M.; Li, Z.H.; Hover, V.C.; Owen, R.B.: Possible Late Holocene equatorial paleoclimate record based on soils spanning the medieval warm period and little ice age, loboi plain, Kenya. Palaeogeogr. Palaeoclimatol. Palaeoecol. 213, 231–250 (2004)

    Article  Google Scholar 

  63. Parker, A.; Davies, C.; Wilkinson, T.: The early to mid-Holocene moist period in Arabia: some recent evidence from lacustrine sequences in eastern and south-western Arabia. Proc. Semin. Arab. Stud. 36, 243–255 (2006)

    Google Scholar 

  64. Amao, A.O.; Kaminski, M.A.; Setoyama, E.: Diversity of Foraminifera in a shallow restricted lagoon in Bahrain. Micropaleontology 62(3), 197–211 (2016)

    Google Scholar 

  65. Haunold, T.G.; Baal, C.; Piller, W.E.: Benthic foraminiferal associations in the northern Bay of Safaga, Red Sea, Egypt. Mar. Micropaleontol. 29, 185–210 (1997)

    Article  Google Scholar 

  66. Renssen, H.; Goosse, H.; Fichefet, T.: Simulation of Holocene cooling events in a coupled climate model. Quatern. Sci. Rev. 26, 2019–2029 (2007)

    Article  Google Scholar 

  67. Trouet, V.; Esper, J.; Graham, N.E.; Baker, A.; Scourse, J.D.; Frank, D.C.: Persistent positive North Atlantic Oscillation mode dominated the Medieval climate anomaly. Science 324, 78–80 (2009)

    Article  Google Scholar 

  68. Trouet, V.; Scourse, J.D.; Raible, C.C.: North Atlantic storminess and Atlantic meridional overturning circulation during the last Millennium: reconciling contradictory proxy records of NAO variability. Global Planet. Change 84(85), 48–55 (2012)

    Article  Google Scholar 

  69. Wanner, H.; Solomina, O.; Grosjean, M.; Ritz, S.P.; Jetel, M.: Structure and origin of Holocene cold events. Quatern. Sci. Rev. 30, 3109–3123 (2011)

    Article  Google Scholar 

  70. Ginau, A.; Engel, M.; Bruckner, H.: Holocene chemical precipitates in the continental sabkha of Tayma (NW Saudi Arabia). J. Arid Environ. 84, 26–37 (2012)

    Article  Google Scholar 

  71. Lamy, F.; Arz, H.W.; Bond, G.C.; Bahr, A.; Pätzold, J.: Multicentennial-scale hydrological changes in the Black Sea and northern Red Sea during the Holocene and the Arctic/North Atlantic Oscillation. Paleoceanography 21, PA1008 (2006)

    Article  Google Scholar 

  72. Rosenberg, T.M.; Preusser, F.; Risberg, J.; Plikk, A.; Kadi, K.A.; Matter, A.; Fleitmann, D.: Middle and Late Pleistocene humid periods recorded in palaeolake deposits of the Nafud desert, Saudi Arabia. Quat. Sci. Rev. 70, 109–123 (2013)

    Article  Google Scholar 

  73. Charpentier Ljungqvist, F.; Krusic, P.J.; Brattström, G.; Sundqvist, H.S.: Northern Hemisphere temperature patterns in the last 12 centuries. Clim. Past 8, 227–249 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. 170/150/1439. The authors, therefore, acknowledge with thanks the DSR for technical and financial support. We express our deep gratitude to Fikry Morshd, Ahmed Taqi, Satria Antoni and Aaid Al-Zubairy for the field helping during sampling. Authors thank the anonymous reviewers for their useful comments and corrections. The comments and suggestions provided by the reviewers are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashad A. Bantan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bantan, R.A., Abu-Zied, R.H. & Al-Dubai, T.A. Late Holocene Environmental Changes in a Sediment Core from Al-Kharrar Lagoon, Eastern Red Sea Coast, Saudi Arabia. Arab J Sci Eng 44, 6557–6570 (2019). https://doi.org/10.1007/s13369-019-03958-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03958-9

Keywords

Navigation