Skip to main content

Advertisement

Log in

Fast Surface Charge Transfer with Reduced Band Gap Energy of FeVO4/Graphene Nanocomposite and Study of Its Electrochemical Property and Enhanced Photocatalytic Activity

  • Research Article - Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Photocatalysis comprises an immense interest for resolving current energy and environmental problems by converting sun light into chemical energy. Here, we developed FeVO4/graphene nanocomposites by using a facile hydrothermal method and characterized the product through powder X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectrometry, UV–visible spectroscopic analysis, Brunauer–Emmett–Teller, photoluminescence spectroscopy and electrochemical impedance spectroscopy. The visible light-assisted photocatalytic activeness was determined by decomposition of methylene blue (MB) dye solution. The outcomes show that the FeVO4/graphene nanocomposites exhibit enhanced photocatalytic efficiency for the oxidization of MB on a maximum degradation removal rate of decolonization 92% while compared with pure FeVO4 nanocomposite (63%). This is attributed to enhanced light absorption capacity, long lifetime of photo-generated charge carriers in FeVO4/graphene nanocomposite and the greater surface area which allow greater extent of adsorption of dye molecules at the catalyst surface. The possible photocatalytic degradation mechanism of FeVO4 and FeVO4/graphene was proposed and critically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Braganza, C.: Doped and Supported Metal Oxide Catalysts for Methylation of Phenol. Goa University, Taleigão (2017)

    Google Scholar 

  2. Chaiwichian, S.; Inceesungvorn, B.; Wetchakun, K.; Phanichphant, S.; Kangwansupamonkon, W.; Wetchakun, N.: Highly efficient visible-light-induced photocatalytic activity of Bi2WO6/BiVO4 heterojunction photocatalysts. Mater. Res. Bull. 54, 28–33 (2014)

    Article  Google Scholar 

  3. Eda, S.-I.; Fujishima, M.; Tada, H.: Low temperature-synthesis of BiVO4 nanorods using polyethylene glycol as a soft template and the visible-light-activity for copper acetylacetonate decomposition. Appl. Catal. B 125, 288–293 (2012)

    Article  Google Scholar 

  4. Leaf-Nosed Bat. Encyclopædia Britannica, Encyclopædia Britannica Online (2009)

  5. Sajid, M.M.; Shad, N.A.; Khan, S.B.; Zhang, Z.; Amin, N.: Facile synthesis of Zinc vanadate Zn3(VO4)2 for highly efficient visible light assisted photocatalytic activity. J. Alloys Compd. 775, 281–289 (2019)

    Article  Google Scholar 

  6. Owusu, P.A.; Asumadu-Sarkodie, S.: A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 3, 1167990 (2016)

    Google Scholar 

  7. Park, C.; Zhang, S.; Wei, S.-H.: Origin of p-type doping difficulty in ZnO: the impurity perspective. Phys. Rev. B 66, 073202 (2002)

    Article  Google Scholar 

  8. An-Min, Z.; Kai, L.; Jian-Ting, J.; Chang-Zhen, H.; Yong, T.; Feng, J.; Qing-Ming, Z.: Raman phonons in multiferroic FeVO4 crystals. Chin. Phys. B 24, 126301 (2015)

    Article  Google Scholar 

  9. Vuk, A.Š.; Orel, B.; Dražič, G.: IR spectroelectrochemical studies of Fe2V4O13, FeVO4 and InVO 4 thin films obtained via sol–gel synthesis. J. Solid State Electrochem. 5, 437–449 (2001)

    Article  Google Scholar 

  10. Zhang, G.Q.; Zhang, X.; Lin, T.; Gong, T.; Qi, M.: Synergetic effect of FeVO4 and α-Fe2O3 in Fe–V–O catalysts for liquid phase oxidation of toluene to benzaldehyde. Chin. Chem. Lett. 23, 145–148 (2012)

    Article  Google Scholar 

  11. Hng, H.H.; Knowles, K.M.: Characterisation of Zn3(VO4)2 phases in V2O5-doped ZnO varistors. J. Eur. Ceram. Soc. 19, 721–726 (1999)

    Article  Google Scholar 

  12. Irfan, S.; Li, L.; Saleemi, A.S.; Nan, C.-W.: Enhanced photocatalytic activity of La3+ and Se4+ co-doped bismuth ferrite nanostructures. J. Mater. Chem. A 5, 11143–11151 (2017)

    Article  Google Scholar 

  13. Irfan, S.; Shen, Y.; Rizwan, S.; Wang, H.C.; Khan, S.B.; Nan, C.W.: Band-gap engineering and enhanced photocatalytic activity of Sm and Mn doped BiFeO3 nanoparticles. J. Am. Ceram. Soc. 100, 31–40 (2017)

    Article  Google Scholar 

  14. Ali, E.B.; Bernède, J.; Barreau, A.: Thin films of FeVO4 obtained by annealing under room atmosphere of Fe and V layers sequentially deposited. Mater. Chem. Phys. 63, 208–212 (2000)

    Article  Google Scholar 

  15. Lehnen, T.; Valldor, M.; Nižňanský, D.; Mathur, S.: Hydrothermally grown porous FeVO 4 nanorods and their integration as active material in gas-sensing devices. J. Mater. Chem. A 2, 1862–1868 (2014)

    Article  Google Scholar 

  16. Li, J.; Zhao, W.; Guo, Y.; Wei, Z.; Han, M.; He, H.; Yang, S.; Sun, C.: Facile synthesis and high activity of novel BiVO4/FeVO4 heterojunction photocatalyst for degradation of metronidazole. Appl. Surf. Sci. 351, 270–279 (2015)

    Article  Google Scholar 

  17. Ma, H.; Yang, X.; Tao, Z.; Liang, J.; Chen, J.: Controllable synthesis and characterization of porous FeVO4 nanorods and nanoparticles. CrystEngComm 13, 897–901 (2011)

    Article  Google Scholar 

  18. Ji, Y.; Cao, J.; Jiang, L.; Zhang, Y.; Yi, Z.: G-C3N4/BiVO4 composites with enhanced and stable visible light photocatalytic activity. J. Alloy. Compd. 590, 9–14 (2014)

    Article  Google Scholar 

  19. Jiang, Y.; Liu, P.; Tian, S.; Liu, Y.; Peng, Z.; Li, F.; Ni, L.; Liu, Z.: Sustainable visible-light-driven Z-scheme porous Zn3(VO4)2/g-C3N4 heterostructure toward highly photoredox pollutant and mechanism insight. J. Taiwan Inst. Chem. Eng. 78, 517–529 (2017)

    Article  Google Scholar 

  20. Dixit, A.; Chen, P.; Lawes, G.; Musfeldt, J.: Electronic structure and polaronic excitation in FeVO4. Appl. Phys. Lett. 99, 141908 (2011)

    Article  Google Scholar 

  21. Hu, S.J.; Yang, J.; Liao, X.H.: Highly Efficient Degradation of Methylene Blue on Microwave Synthesized FeVO4 Nanoparticles Photocatalysts Under Visible-Light Irradiation, Applied Mechanics and Materials, pp. 153–157. Trans Tech Publications Ltd., New York (2013)

    Google Scholar 

  22. Chou, S.-Y.; Chen, C.-C.; Dai, Y.-M.; Lin, J.-H.; Lee, W.W.: Novel synthesis of bismuth oxyiodide/graphitic carbon nitride nanocomposites with enhanced visible-light photocatalytic activity. RSC Adv. 6, 33478–33491 (2016)

    Article  Google Scholar 

  23. Lee, A.-H.; Wang, Y.-C.; Chen, C.-C.: Composite photocatalyst, tetragonal lead bismuth oxyiodide/bismuth oxyiodide/graphitic carbon nitride: synthesis, characterization, and photocatalytic activity. J. Colloid Interface Sci. 533, 319–332 (2019)

    Article  Google Scholar 

  24. Nong, Q.; Cui, M.; Lin, H.; Zhao, L.; He, Y.: Fabrication, characterization and photocatalytic activity of gC 3N 4 coupled with FeVO4 nanorods. RSC Adv. 5, 27933–27939 (2015)

    Article  Google Scholar 

  25. Zhang, J.; Liu, W.; Li, X.; Zhan, B.; Cui, Q.; Zou, G.: Well-crystallized nitrogen-rich graphitic carbon nitride nanocrystallites prepared via solvothermal route at low temperature. Mater. Res. Bull. 44, 294–297 (2009)

    Article  Google Scholar 

  26. Deng, J.; Jiang, J.; Zhang, Y.; Lin, X.; Du, C.; Xiong, Y.: FeVO4 as a highly active heterogeneous Fenton-like catalyst towards the degradation of Orange II. Appl. Catal. B 84, 468–473 (2008)

    Article  Google Scholar 

  27. Meng, X.; Zhang, L.; Dai, H.; Zhao, Z.; Zhang, R.; Liu, Y.: Surfactant-assisted hydrothermal fabrication and visible-light-driven photocatalytic degradation of methylene blue over multiple morphological BiVO4 single-crystallites. Mater. Chem. Phys. 125, 59–65 (2011)

    Article  Google Scholar 

  28. Rao, H.; Lu, Z.; Liu, X.; Ge, H.; Zhang, Z.; Zou, P.; He, H.; Wang, Y.: Visible light-driven photocatalytic degradation performance for methylene blue with different multi-morphological features of ZnS. RSC Adv. 6, 46299–46307 (2016)

    Article  Google Scholar 

  29. Zhang, L.; Long, J.; Pan, W.; Zhou, S.; Zhu, J.; Zhao, Y.; Wang, X.; Cao, G.: Efficient removal of methylene blue over composite-phase BiVO4 fabricated by hydrothermal control synthesis. Mater. Chem. Phys. 136, 897–902 (2012)

    Article  Google Scholar 

  30. Ghiyasiyan-Arani, M.; Salavati-Niasari, M.; Masjedi-Arani, M.; Mazloom, F.: An easy sonochemical route for synthesis, characterization and photocatalytic performance of nanosized FeVO4 in the presence of aminoacids as green capping agents. J. Mater. Sci.: Mater. Electron. 29, 474–485 (2018)

    Google Scholar 

  31. Kumari, S.; Gutkowski, R.; Junqueira, J.R.; Kostka, A.; Hengge, K.; Scheu, C.; Schuhmann, W.; Ludwig, A.: Combinatorial synthesis and high-throughput characterization of Fe–V–O thin-film materials libraries for solar water splitting. ACS Comb. Sci. 20, 544–553 (2018)

    Article  Google Scholar 

  32. López-Moreno, S.; Errandonea, D.; Pellicer-Porres, J.; Martínez-García, D.; Patwe, S.J.; Achary, S.N.; Tyagi, A.K.; Rodríguez-Hernández, P.; Muñoz, A.; Popescu, C.: Stability of FeVO4 under pressure: an x-ray diffraction and first-principles study. Inorg. Chem. 57, 7860 (2018)

    Article  Google Scholar 

  33. Shokoofehpoor, F.; Chaibakhsh, N.; Gilani, A.G.: Optimization of sono-Fenton degradation of Acid Blue 113 using iron vanadate nanoparticles. Sep. Sci. Technol. (2018). https://doi.org/10.1080/01496395.2018.1556299

    Google Scholar 

  34. Pookmanee, P.; Longchin, P.; Phanmalee, J.; Kangwansupamonkon, W.; Phanichphant, S.: Performance photocatalytic degradation of methomyl onto composite graphene oxide/bismuth vanadate (GO/BiVO4) nanoparticle. Key Eng. Mater. 751, 701 (2017)

    Article  Google Scholar 

  35. Xu, X.; Zou, Q.; Yuan, Y.; Ji, F.; Fan, Z.; Zhou, B.: Preparation of BiVO4-graphene nanocomposites and their photocatalytic activity. J. Nanomater. 2014, 77 (2014)

    Google Scholar 

  36. Zhang, H.; Ye, K.; Zhu, K.; Cang, R.; Yan, J.; Cheng, K.; Wang, G.; Cao, D.: The FeVO4 0.9 H2O/graphene composite as anode in aqueous magnesium ion battery. Electrochimica Acta 256, 357–364 (2017)

    Article  Google Scholar 

  37. Zhao, C.; Tan, G.; Yang, W.; Xu, C.; Liu, T.; Su, Y.; Ren, H.; Xia, A.: Fast interfacial charge transfer in α-Fe2O3–C/FeVO4–x+C x–C bulk heterojunctions with controllable phase content. Sci. Rep. 6, 38603 (2016)

    Article  Google Scholar 

  38. Malaidurai, M,; Bulusu, V.; Thangavel, R.: Synthesis, characterization, and investigation of ambipolar behaviour on FeVO4 nanocrystals. In: 2018 3rd International Conference on Microwave and Photonics (ICMAP), pp. 1–2. IEEE (2018).

  39. Pei, Z.; Zheng, X.; Wang, P.: Controllable synthesis of one-dimensional nanowires and snowflake-like nanostructures via mixed solvent thermal method. J. Nanosci. Nanotechnol. 18, 467–470 (2018)

    Article  Google Scholar 

  40. Pei, L.; Lin, N.; Wei, T.; Liu, H.; Yu, H.: Zinc vanadate nanorods and their visible light photocatalytic activity. J. Alloys Compd. 631, 90–98 (2015)

    Article  Google Scholar 

  41. Mao, L.-J.; Liu, C.-Y.; Li, J.: Template-free synthesis of VOx hierarchical hollow spheres. J. Mater. Chem. 18, 1640–1643 (2008)

    Article  Google Scholar 

  42. Brinklov, S.; Kalko, E.K.V.; Surlykke, A.: Intense echolocation calls from two ‘whispering’ bats, Artibeus jamaicensis and Macrophyllum macrophyllum (Phyllostomidae). J. Exp. Biol. 212, 11–20 (2009)

    Article  Google Scholar 

  43. Guan, Y.; Su, Y.; Mu, J.; Wang, L.; Li, H.; Li, X.; Che, H.; Guo, Z.: One-dimensional photocatalysts of AVO4 (A = Bi, Fe)/carbon nanofibers frameworks: an alternative strategy in improving photocatalytic activities. J. Mater. Sci.: Mater. Electron. 29, 11852–11861 (2018)

    Google Scholar 

  44. Fujishima, A.; Rao, T.N.; Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 1, 1–21 (2000)

    Article  Google Scholar 

  45. Higashimoto, S.; Sakiyama, M.; Azuma, M.: Photoelectrochemical properties of hybrid WO3/TiO2 electrode. Effect of structures of WO3 on charge separation behavior. Thin Solid Films 503, 201–206 (2006)

    Article  Google Scholar 

  46. Khan, M.Y.A.; Zahoor, M.; Shaheen, A.; Jamil, N.; Arshad, M.I.; Bajwa, S.Z.; Shad, N.A.; Butt, R.; Ali, I.; Iqbal, M.Z.: Visible light photocatalytic degradation of crystal violet dye and electrochemical detection of ascorbic acid and glucose using BaWO4 nanorods. Mater. Res. Bull. 104, 38–43 (2018)

    Article  Google Scholar 

  47. Khan, S.B.; Hou, M.; Shuang, S.; Zhang, Z.: Morphological influence of TiO2 nanostructures (nanozigzag, nanohelics and nanorod) on photocatalytic degradation of organic dyes. Appl. Surf. Sci. 400, 184–193 (2017)

    Article  Google Scholar 

  48. Kim, T.W.; Choi, K.-S.: Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 1245026 (2014)

    Article  Google Scholar 

  49. Fujihara, K.; Izumi, S.; Ohno, T.; Matsumura, M.: Time-resolved photoluminescence of particulate TiO2 photocatalysts suspended in aqueous solutions. J. Photochem. Photobiol. A 132, 99–104 (2000)

    Article  Google Scholar 

  50. Balamurugan, M.; Yun, G.; Ahn, K.-S.; Kang, S.H.: Revealing the beneficial effects of FeVO4 nanoshell layer on the BiVO4 inverse opal core layer for photoelectrochemical water oxidation. J. Phys. Chem. C 121, 7625–7634 (2017)

    Article  Google Scholar 

  51. Behofsits, T.; Pani, G.; Gross, M.; Fafilek, G.; Malys, M.: Electrochemical Properties of CeVO4 and FeVO4 at High Temperatures. ECS Trans. 63, 137–144 (2014)

    Article  Google Scholar 

  52. Kaneti, Y.V.: Synthesis and Fundamental Understanding of Metal Oxide Nanostructures for Gas-Sensing Applications. The University of New South Wales, Sydney (2014)

    Google Scholar 

  53. Nithya, V.; Selvan, R.K.: Synthesis, electrical and dielectric properties of FeVO4 nanoparticles. Phys. B 406, 24–29 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

All the experiments had been performed at Government college university Faisalabad, Pakistan. I am thankful to Dr. Zhengjun Zhang for supporting SEM, EDX, BET, PL and EIS techniques, Advanced Key Laboratory for New Ceramics, School of Materials Science & Engineering, Tsinghua University, Beijing, China, 100084.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Munir Sajid or Nasir Amin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajid, M.M., Shad, N.A., Javed, Y. et al. Fast Surface Charge Transfer with Reduced Band Gap Energy of FeVO4/Graphene Nanocomposite and Study of Its Electrochemical Property and Enhanced Photocatalytic Activity. Arab J Sci Eng 44, 6659–6667 (2019). https://doi.org/10.1007/s13369-019-03927-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03927-2

Keywords

Navigation