Skip to main content
Log in

Computationally Optimized MIMO Antenna with Improved Isolation and Extended Bandwidth for UWB Applications

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Isolation and bandwidth are the two important performance parameters of the multiple-input-multiple-output (MIMO) antenna. A small footprint of an antenna with enhanced isolation and extended bandwidth is highly desirable for space-limited UWB applications. In this paper, we present a compact and computationally optimized MIMO antenna for UWB applications. The proposed antenna consists of two micro-strip-fed semicircular radiating elements. The inverted prism-shaped ground stub is used to enhance isolation. A truncated-shaped partial ground plane with two ground slots is used for impedance matching over the extended UWB. The circular monopole radiating elements of the reference antenna (RA) are converted into semicircular radiating elements for efficient utilization of the available space. The initial design parameters are obtained from the RA. In the next step, the initial design parameters are optimized by a fast and accurate surrogate-assisted optimization model. Using the optimized design parameters, the final design of the antenna is simulated using a computer simulation tool. The prototype of the antenna is fabricated on a Roger substrate (substrate height ‘h’ = 0.8 mm) with a dielectric constant of 3. The manufactured prototype with the size of 31 × 18 mm2 is experimentally evaluated and validated using vector network analyser and anechoic chamber. The proposed MIMO antenna provides extended ultra-wide impedance bandwidth of 3–25 GHz (fractional bandwidth 157%), enhanced isolation S21 ≤ − 27 dB envelope correlation coefficient (ECC = 0.002), good pattern diversity, and constant group delay. Finally, the obtained results are compared with the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sultan, J.; Misran, N.; Ismail, M.; Islam, M.T.: Topology-aware macro diversity handover technique for IEEE 802.16 j multi-hop cellular networks. IET Commun. 5, 700–708 (2011)

    Article  Google Scholar 

  2. Kumaravelu, V.B.; Jaiswal, G.; Gudla, V.V.; Reddy, G.R.; Murugadass, A.: Modified spatial modulation: an alternate to spatial multiplexing for 5G-based compact wireless devices. Arab. J. Sci. Eng. (2018). https://doi.org/10.1007/s13369-018-3572-9

    Article  Google Scholar 

  3. Lu, L.; Li, G.Y.; Swindlehurst, A.L.; Ashikhmin, A.; Zhang, R.: An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Top. Signal Process. 8, 742–758 (2014)

    Article  Google Scholar 

  4. Khan, M.S.; Capobianco, A.D.; Asif, S.M.; Anagnostou, D.E.; Shubair, R.M.; Braaten, B.D.: A compact CSRR-enabled UWB diversity antenna. IEEE Antennas Wirel. Propag. Lett. 16, 808–812 (2017)

    Article  Google Scholar 

  5. Sharawi, M.S.: A 5-GHz 4/8-element MIMO antenna system for IEEE 802.11AC devices. Microw. Opt. Technol. Lett. 55(7), 1589–1594 (2013)

    Article  Google Scholar 

  6. Iqbal, A.; Saraereh, O.A.; Ahmad, A.W.; Bashir, S.: Mutual coupling reduction using F-shaped stubs in UWB-MIMO Antenna. IEEE Access 6, 2755–2759 (2018)

    Article  Google Scholar 

  7. Lin, G.S.; Sung, C.H.; Chen, J.L.; Chen, L.S.; Houng, M.P.: Isolation improvement in UWB MIMO antenna system using carbon black film. IEEE Antennas Wirel. Propag. Lett. 16, 222–225 (2017)

    Article  Google Scholar 

  8. Najam, A.; Duroc, Y.; Tedjni, S.: UWB-MIMO antenna with novel stub structure. Prog. Electromagn. Res. 19, 245–247 (2011)

    Article  Google Scholar 

  9. Mathur, R.; Dwari, S.: Compact CPW-Fed ultrawideband MIMO antenna using hexagonal ring monopole antenna elements. AEU Int. J. Electron. Commun. 93, 1–6 (2018)

    Article  Google Scholar 

  10. Zhang, S.; Pedersen, G.F.: Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line. IEEE Antennas Wirel. Propag. Lett. 15, 166–169 (2016)

    Article  Google Scholar 

  11. Su, S.W.; Lee, C.T.; Chen, S.C.: Very-low-profile, triband, two-antenna system for WLAN notebook computers. IEEE Antennas Wirel. Propag. Lett. 17, 1626–1629 (2018)

    Article  Google Scholar 

  12. Su, S.W.; Lee, C.T.; Chang, F.S.: Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications. IEEE Trans. Antennas Propag. 60, 456–463 (2012)

    Article  Google Scholar 

  13. Singh, S.P.; Urooj, S.; Lay-Ekuakille, A.: Breast cancer detection using PCPCET and ADEWNN: A geometric invariant approach to medical X-ray image sensors. IEEE Sens. J. 16, 4847–4855 (2016)

    Article  Google Scholar 

  14. Cao, Y.; Wang, G.; Zhang, Q.J.: A new training approach for parametric modeling of microwave passive components using combined neural networks and transfer functions. IEEE Trans. Microw. Theory Tech. 57, 2727–2742 (2009)

    Article  Google Scholar 

  15. Wang, Z.; Fang, S.; Wang, Q.; Liu, H.: An ANN-based synthesis model for the single-feed circularly-polarized square microstrip antenna with truncated corners. IEEE Trans. Antennas Propag. 60, 5989–5992 (2012)

    Article  Google Scholar 

  16. Delgado, H.J.; Thursby, M.H.: A novel neural network combined with FDTD for the synthesis of a printed dipole antenna. IEEE Trans. Antennas Propag. 53, 2231–2236 (2005)

    Article  Google Scholar 

  17. Akdagli, A.; Güney, K.; Karaboga, D.: Pattern nulling of linear antenna arrays by controlling only the element positions with the use of improved touring ant colony optimization algorithm. J. Electromagn. Waves Appl. 16(10), 1423–1441 (2002)

    Article  Google Scholar 

  18. Islam, M.; Misran, N.; Take, T.C.: Optimization of microstrip patch antenna using particle swarm optimization with curve fitting. In: ICEEI’09. International Conference (2009)

  19. Jin, N.; Rahmat-Samii, Y.: Parallel particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs. IEEE Trans. Antennas Propag. 53, 3459–3468 (2005)

    Article  Google Scholar 

  20. Recioui, A.; Azrar, A.; Bentarzi, H.; Dehmas, M.; Chalal, M.: Synthesis of linear arrays with sidelobe level reduction constraint using genetic algorithms. Int. J. Microw. Opt. Technol. 3, 524–530 (2008)

    Google Scholar 

  21. Recioui, A.; Azrar, A.: Use of genetic algorithms in linear and planar antenna array synthesis based on Schelkunoff method. Microw. Opt. Technol. Lett. 49(7), 1619–1623 (2007)

    Article  Google Scholar 

  22. Datta, R.; Regis, R.G.: A surrogate-assisted evolution strategy for constrained multi-objective optimization. Expert Syst. Appl. 57, 270–284 (2016)

    Article  Google Scholar 

  23. Badhurshah, R.; Samad, A.: Surrogate assisted design optimization of an air turbine. Int. J. Rotating Mach. 2014, 563483 (2014). https://doi.org/10.1155/2014/563483

    Article  Google Scholar 

  24. Díaz-Manríquez, A.; Toscano, G.; Barron-Zambrano, J.H.; Tello-Leal, E.: A review of surrogate assisted multiobjective evolutionary algorithms. Comput. Intell. Neurosci. 2016, 9420460 (2016). https://doi.org/10.1155/2016/9420460

    Article  Google Scholar 

  25. Li, S.; Feng, L.; Benner, P.; Seidel-Morgenstern, A.: Using surrogate models for efficient optimization of simulated moving bed chromatography. Comput. Chem. Eng. 67, 121–132 (2014)

    Article  Google Scholar 

  26. Sharma, M.; Kumar, M.: UWB-MIMO diversity antenna for next generation wireless applications. In: 2016 3rd International Conference Computing for Sustainable Global Development (INDIACom), pp. 1528–1532

  27. Balanis, C.: Modern Antenna Handbook. Wiley, Hoboken (2011)

    Google Scholar 

  28. Garg, R.; Bhartia, P.; Bahl, I.J.; Ittipiboon, A.: Microstrip Antenna Design Handbook. Artech House, Norwood (2001)

    Google Scholar 

  29. Balanis, C.A.; Ioannides, P.I.: Introduction to smart antennas. Synth. Lect. Antennas 2(1), 1–175 (2007)

    Article  Google Scholar 

  30. Koziel, S.; Bekasiewicz, A.; Cheng, Q.S.: Conceptual design and automated optimisation of a novel compact UWB MIMO slot antenna. IET Microw. Antennas Propag. 11, 1162–1168 (2017)

    Article  Google Scholar 

  31. Blanch, S.; Romeu, J.; Corbella, I.: Exact representation of antenna system diversity performance from input parameter description. IET Electron. Lett. 39, 705–707 (2003)

    Article  Google Scholar 

  32. Gesbert, D.; Kountouris, M.; Heath, R.W.; Chae, C.B.; Salzer, T.: Shifting the MIMO paradigm: from single user to multiuser communications. IEEE Signal Process. Mag. 24, 36–46 (2007)

    Article  Google Scholar 

  33. Wiesbeck, W.; Adamiuk, G.; Sturm, C.: Basic properties and design principles of UWB antennas. Proc. IEEE 97, 372–385 (2009)

    Article  Google Scholar 

  34. Dabas, T.; Gangwar, D.; Kanaujia, B.K.; Gautam, A.K.: Mutual coupling reduction between elements of UWB MIMO antenna using small size uniplanar EBG exhibiting multiple stop bands. AEU Int. J. Electron. Commun. 93, 32–38 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya P. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M.K., Kumar, M., Saini, J.P. et al. Computationally Optimized MIMO Antenna with Improved Isolation and Extended Bandwidth for UWB Applications. Arab J Sci Eng 45, 1333–1343 (2020). https://doi.org/10.1007/s13369-019-03888-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03888-6

Keywords

Navigation