Skip to main content
Log in

Study on Metal Plate Vibration Response Under Coal–Gangue Impact Based on 3D Simulation

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The collision between the coal–gangue and the metal plate of the hydraulic support is a typical mechanical contact behavior in the surface coal mining, which will cause vibration in the tail beam and even in the whole hydraulic support. This paper presents a contact analysis of coal–gangue impact on the metal plate to discover how vibration signals are generated and propagated in the collision process. We build a dynamic model for rock impact on the metal plate based on the elastoplastic contact theory, the Drucker–Prager criterion and the Tavares and King particle impact damage model. We establish a finite element model of the impact system between the coal–gangue and the metal plate, conduct contact simulation using the software LS-DYNA and study the stress transfer process on the metal plate contact surface. We compare the parameters of coal and gangue impact on the metal plate and discuss how they are different by calculating the stress and displacement created in the metal plate, kinetic energy of the coal–gangue particles and the total energy of the metal plate. In addition, we study the effect of impact velocity on the vibration response of the metal plate. Results show that the stress wave diffuses outward from the center of the metal plate. The collision frequency, contact position of the rock sphere and re-collision time are random. As the impact velocity increases, the contact responses all increase. This study provides guidance for the analysis of vibration response of coal–gangue impact on tail beam .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Alehossein, H.; Poulsen, B.N.: Stress analysis of longwall top coal caving. Int. J. Rock Mech. Min. Sci. 47, 30–41 (2010)

    Article  Google Scholar 

  2. Jiang, S.B.; Zeng, Q.L.; Wang, G.; Gao, K.D.; Wang, Q.Y.; Hidenori, K.: Contact analysis of chain drive in scraper conveyor based on dynamic meshing properties. Int. J. Simul. Model. 17(1), 81–91 (2018)

    Article  Google Scholar 

  3. Zhang, Q.; Zhang, J.X.; Tai, Y.; Fang, K.; Yin, W.: Horizontal roof gap of backfill hydraulic support. J. Cent. South Univ. 22(9), 3544–3555 (2015)

    Article  Google Scholar 

  4. Liang, L.C.; Tian, J.J.; Zheng, H.; Jiao, S.J.: A study on force transmission in a hydraulic support under impact loading on its canopy beam. J China Coal Soc. 40(11), 2522–2527 (2015)

    Google Scholar 

  5. Wan, L.R.; Liu, P.; Meng, Z.S.; Lu, Y.J.: Analysis of the influence of impact load on shield beam of hydraulic support. J. China Coal Soc. 42(9), 2462–2467 (2017)

    Google Scholar 

  6. Brizmer, V.; Kligerman, Y.; Etsion, I.: The effect of contact conditions and material properties on the elasticity terminus of a spherical contact. Int. J. Solids Struct. 43, 5736–5749 (2006)

    Article  MATH  Google Scholar 

  7. Xiao, H.F.; Brennan, M.J.; Shao, Y.M.: On the undamped free vibration of a mass interacting with a Hertzian contact stiffness. Mech. Res. Commun. 38, 560–564 (2011)

    Article  MATH  Google Scholar 

  8. Stronge, W.J.; Ashcroft, A.D.C.: Oblique impact of inflated balls at large deflections. Int. J. Impact Eng. 34, 1003–1019 (2007)

    Article  Google Scholar 

  9. Goltsberg, R.; Etsion, I.: Contact area and maximum equivalent stress in elastic spherical contact with thin hard coating. Tribol. Int. 93, 289–296 (2016)

    Article  Google Scholar 

  10. Wang, T.J.; Wang, L.Q.: Stress analysis of elastic coated solids in point contact. Tribol. Int. 86, 52–61 (2015)

    Article  Google Scholar 

  11. Wang, Z.J.; Yu, H.; Wang, Q.: Layer-substrate system with an imperfectly bonded interface: spring-like condition. Int. J. Mech. Sci. 134, 315–335 (2017)

    Article  Google Scholar 

  12. Ju, J.S.; Zhang, Y.P.; Jiang, X.G.: A probe into elastic impact load of beam subjected to lateral impact of ball. J. China Agric. Univ. 12(3), 93–95 (2007)

    Google Scholar 

  13. Ju, J.S.; Jiang, X.G.; Fu, X.R.: Elasto-plastic impact load of the beam subjected to lateral shock of ball. Eng. Mech. 25(4), 32–38 (2008)

    Google Scholar 

  14. Li, F.W.; Li, Y.H.; Xu, Z.L.; Jin, L.Z.: Numerical simulation on the impacting and comminuting of coal based on LS-DYNA. J. Coal Sci. Eng. (China) 14(4), 644–647 (2008)

    Article  MathSciNet  Google Scholar 

  15. Vu-Quoc, L.; Lesburg, L.; Zhang, X.: An accurate tangential force–displacement model for granular-flow simulations: contacting spheres with plastic deformation, force-driven formulation. J. Comput. Phys. 196, 298–326 (2004)

    Article  MATH  Google Scholar 

  16. Vu-Quoc, L.; Zhang, X.; Lesburg, L.: Normal and tangential force-displacement relations for frictional elasto-plastic contact of spheres. Int. J. Solids Struct. 38, 6455–6489 (2001)

    Article  MATH  Google Scholar 

  17. Civalek, Ö.: Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches. Compos. B 50, 171–179 (2013)

    Article  Google Scholar 

  18. Baltacıoglu, A.K.; Akgöz, B.; Civalek, Ö.: Nonlinear static response of laminated composite plates by discrete singular convolution method. Compos. Struct. 93, 153–161 (2010)

    Article  Google Scholar 

  19. Baltacıoğlu, A.K.; Civalek, Ö.; Akgöz, B.; Demir, F.: Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution. Int. J. Press. Vessels Pip. 88, 290–300 (2011)

    Article  Google Scholar 

  20. Shi, D.R.; Wang, Q.S.; Shi, X.J.; Pang, F.Z.: A series solution for the in-plane vibration analysis of orthotropic rectangular plates with non-uniform elastic boundary constraints and internal line supports. Arch. Appl. Mech. 85(1), 51–73 (2015)

    Article  Google Scholar 

  21. Wang, Z.; Huang, X.; Zhou, J.P.: A numerical method for delayed fractional-order differential equations: based on G-L definition. Appl. Math. Inf. Sci. 2, 525–529 (2013)

    Article  MathSciNet  Google Scholar 

  22. Rivera, M.G.; Reddy, J.N.: Nonlinear transient and thermal analysis of functionally graded shells using a seven-parameter shell finite element. J. Model. Mech. Mater. (2017). https://doi.org/10.1515/jmmm-2017-0003

    Google Scholar 

  23. Lankarani, H.M.; Nikravesh, P.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5(2), 193–207 (1994)

    Google Scholar 

  24. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  25. Alejano, L.R.; Bobet, A.: Drucker–Prager criterion. Rock Mech. Rock Eng. 45, 995–999 (2012)

    Article  Google Scholar 

  26. Yang, Y.; Zeng, Q.L.; Wan, L.R.: Dynamic response analysis of the vertical elastic impact of the spherical rock on the metal plate. Int. J. Solids Struct. 158, 287–302 (2019)

    Article  Google Scholar 

  27. Yun, X.Y.: Geomechanical Behaviour of Biaxially Loaded Rock. Thesis for the Degree of Doctor of Philosophy. McGill University. Montreal, Canada (2008)

  28. Yu, T.; Teng, J.G.; Wong, Y.L.; Dong, S.L.: Finite element modeling of confined concrete-I: Drucker–Prager type plasticity model. Eng. Struct. 32, 665–679 (2010)

    Article  Google Scholar 

  29. Rahimi, R. The Effect of Using Different Rock Failure Criteria in Wellbore Stability Analysis. Thesis for the degree of Master of Science. Missouri University of Science and Technology. Missouri, the United States (2014)

  30. Ding, X.; Zhang, G.Q.: Coefficient of equivalent plastic strain based on the associated flow of the Drucker–Prager criterion. Int. J. Non-Linear Mech. 93, 15–20 (2017)

    Article  Google Scholar 

  31. Hou, G.Y.; Niu, X.S.: Perfect elastoplastic solution of axisymmetric circular openings in rock mass based on Levy–Mises constitutive relation and D-P yield criterion. Rock Soil Mech. 30(6), 1555–1562 (2009)

    Google Scholar 

  32. He, S.M.; Wu, Y.; Li, X.P.: Theoretical model on elastic–plastic granule impact. Eng. Mech. 25(12), 19–24 (2008)

    Google Scholar 

  33. He, S.M.; Liao, Z.W.; Liu, W.; Yan, S.X.: Impact damage of granular material. J. Vib. Shock 35(23), 100–105 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Fund of China (Grant No. 51674155), Innovative Team Development Project of Ministry of Education (Grant No. IRT_16R45) and Special funds for Climbing Project of Taishan Scholars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yang.

Ethics declarations

Conflict of interest

The author(s) confirm that this article content has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Q., Yang, Y., Zhang, X. et al. Study on Metal Plate Vibration Response Under Coal–Gangue Impact Based on 3D Simulation. Arab J Sci Eng 44, 7567–7580 (2019). https://doi.org/10.1007/s13369-019-03853-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03853-3

Keywords

Navigation