Skip to main content

Advertisement

Log in

Computation of the Reliable and Quickest Data Path for Healthcare Services by Using Service-Level Agreements and Energy Constraints

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Designing a mission critical system, such as a remote surgery, e-healthcare, e-banking, or e-shopping system, is a challenging task. The continuity and criticality of operation in mission critical systems depend on their delay, capacity, reliability, and energy. In this study, the energy available at each node and the service-level agreements (SLAs) are influenced by the continuity and criticality of data transmission. SLAs are drawn as requested service time and service mean time to failure. For the failure-free operation of mission critical systems, the SLA energy cooperative reliable and quickest path problem (SERQPP) algorithm is defined between a specified source and destination. Analysis indicates that the SERQPP path is a reliable and quickest option for data transmission in remote healthcare applications. The performance of the proposed algorithm is analyzed using mean number of qualifying service set (QSS) paths, average hop count, and average energy efficiency. Simulations are used to determine the variation trends for the SLAs, energy, numbers of nodes, distinct capacities, and data required for the computation of the SERQPP. In the results, it is showing that the number of QSS paths and average energy efficiency are increased with the increase in SLA and energy. In addition to this, quantitative and qualitative comparative study shows that the proposed algorithm outperforms in computation of SERQPP without increasing the time complexity. Finally, the major features of the SERQPP algorithm are discussed and highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aceto, G.; Persico, V.; Pescapé, A.: The role of information and communication technologies in healthcare: taxonomies, perspectives, and challenges. J. Netw. Comput. Appl. 107, 125–154 (2018)

    Article  Google Scholar 

  2. Cook, D.J.; Duncan, G.; Sprint, G.; Fritz, R.L.: Using smart city technology to make healthcare smarter. Proc. IEEE 106, 708–722 (2018)

    Article  Google Scholar 

  3. Liu, H.; Ning, H.; Mu, Q.; Zheng, Y.; Zeng, J.; Yang, L.T.; Huang, R.; Ma, J.: A review of the smart world. Future Gener. Comput. Syst. (2017). https://doi.org/10.1016/j.future.2017.09.010

  4. Sharma, A.; Kumar, R.: An optimal routing scheme for critical healthcare HTH services–an IOT perspective. In: 2017 Fourth International Conference on Image Information Processing (ICIIP), pp. 1–5 (2017)

  5. Kumar, R.; Cholda, P.: A framework for continuity of mission-critical network services In: 2015 IEEE International Conference on Advanced Networks and Telecommuncations Systems (ANTS), pp. 1–3 (2015)

  6. Redjem, R.; Marcon, E.: Operations management in the home care services: a heuristic for the caregivers’ routing problem. Flex. Serv. Manuf. J. 28, 280–303 (2016)

    Article  Google Scholar 

  7. Milburn, A.B.: Operations Research Applications in Home Healthcare. In: Hall, R. (ed.) Handbook of Healthcare System Scheduling, pp. 281–302. Springer, Boston (2012)

    Chapter  Google Scholar 

  8. Issabakhsh, M.; Hosseini-Motlagh, S.-M.; Pishvaee, M.-S.; Saghafi Nia, M.: A vehicle routing problem for modeling home healthcare: a case study. Int. J. Transp. Eng. 5, 211–228 (2018)

    Google Scholar 

  9. Sawand, A.; Djahel, S.; Zhang, Z.; Nait-Abdesselam, F.: Toward energy-efficient and trustworthy eHealth monitoring system. China Commun. 12, 46–65 (2015)

    Article  Google Scholar 

  10. Mounika, A.; Sasirekha, K.; Vigna Vinod Kumar, N.: A Secure IoT-Based Modern Healthcare System Using Body Sensor Network (2017)

  11. Fikar, C.; Hirsch, P.: Home health care routing and scheduling: a review. Comput. Oper. Res. 77, 86–95 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duque, P.M.; Castro, M.; Sörensen, K.; Goos, P.: Home care service planning. The case of Landelijke Thuiszorg. Eur. J. Oper. Res. 243, 292–301 (2015)

    Article  MATH  Google Scholar 

  13. Benabdouallah, M.; Bojji, C.: A review on coverage models applied to emergency location. Int. J. Emergency Manage. 14(2), 180–199 (2018)

    Article  Google Scholar 

  14. Marilly, E.; Martinot, O.; Betgé-Brezetz, S.; Delègue, G.: Requirements for service level agreement management. In: 2002 IEEE Workshop on IP Operations and Management, pp. 57–62 (2002)

  15. Xia, M.; Tornatore, M.; Martel, C.U.; Mukherjee, B.: Risk-aware provisioning for optical WDM mesh networks. IEEE/ACM Trans. Netw. 19, 921–931 (2011)

    Article  Google Scholar 

  16. Fawaz, W.; Daheb, B.; Audouin, O.; Du-Pond, M.; Pujolle, G.: Service level agreement and provisioning in optical networks. IEEE Commun. Mag. 42, 36–43 (2004)

    Article  Google Scholar 

  17. Sharma, A.; Kumar, R.: Risk-energy aware service level agreement assessment for computing quickest path in computer networks. Int. J. Reliab. Saf. 13, 96–124 (2019)

    Article  Google Scholar 

  18. Boukhanovsky, A.V.; Krzhizhanovskaya, V.V.; Bubak, M.: Urgent Computing for Decision Support in Critical Situations. Elsevier, Amsterdam (2018)

    Book  Google Scholar 

  19. Calvete, H.I.; del-Pozo, L.; Iranzo, J.A.: The energy-constrained quickest path problem. Optim. Lett. 11, 1319–1339 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Duan, Z.; Zhang, Z.-L.; Hou, Y.T.: Service overlay networks: SLAs, QoS, and bandwidth provisioning. IEEE/ACM Trans. Netw. (TON) 11, 870–883 (2003)

    Article  Google Scholar 

  21. Calvete, H.I.; del-Pozo, L.; Iranzo, J.A.: Dealing with residual energy when transmitting data in energy-constrained capacitated networks. Eur. J. Oper. Res. 269, 602–620 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sharma, A.; Kumar, R.: Service-level agreement–energy cooperative quickest ambulance routing for critical healthcare services. Arab. J. Sci. Eng. 44, 1–18 (2019)

    Article  Google Scholar 

  23. Ahuja, R.K.; Magnanti, T.L.; Orlin, J.B.: Network Flows. Elsevier, Amsterdam (1988)

    Book  MATH  Google Scholar 

  24. Ahuja, R.K.; Magnanti, T.L.; Orlin, J.B.: Network Flows. Elsevier, Amsterdam (2014)

    MATH  Google Scholar 

  25. Martins, E.D.Q.V.; Dos Santos, J.L.E.: An algorithm for the quickest path problem. Oper. Res. Lett. 20, 195–198 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rosen, J.B.; Sun, S.-Z.; Xue, G.-L.: Algorithms for the quickest path problem and the enumeration of quickest paths. Comput. Oper. Res. 18, 579–584 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ruzika, S.; Thiemann, M.: Reliable and restricted quickest path problems. In: Pahl, J. (ed.) Network Optimization, pp. 309–314. Springer, Berlin (2011)

    Chapter  Google Scholar 

  28. Pascoal, M.; Captivo, M.; Clímaco, J.: Computational experiments with a lazy version of a K quickest simple path ranking algorithm. TOP 15, 372–382 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pascoal, M.M.; Captivo, M.E.V.; Clímaco, J.C.: An algorithm for ranking quickest simple paths. Comput. Oper. Res. 32, 509–520 (2005)

    Article  MATH  Google Scholar 

  30. Pascoal, M.M.; Captivo, M.E.V.; Clímaco, J.C.: A comprehensive survey on the quickest path problem. Ann. Oper. Res. 147, 5–21 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hamacher, H.; Tjandra, S.: Mathematical modelling of evacuation problems: a state of the art. In: Schreckenberg, M., Sharma, S. (eds.) Pedestrian and Evacuation Dynamics, pp. 227–266. Springer, Berlin (2002)

    Google Scholar 

  32. Smith, D.J.: Reliability, Maintainability and Risk: Practical Methods for Engineers. Elsevier, Oxford (2017)

    Google Scholar 

  33. Ahuja, R.K.: Minimum cost-reliability ratio path problem. Comput. Oper. Res. 15, 83–89 (1988)

    Article  MATH  Google Scholar 

  34. Xue, G.: End-to-end data paths: quickest or most reliable? IEEE Commun. Lett. 2, 156–158 (1998)

    Article  Google Scholar 

  35. Tragoudas, S.: The most reliable data-path transmission. IEEE Trans. Reliab. 50, 281–285 (2001)

    Article  Google Scholar 

  36. Lin, Y.-K.: Extend the quickest path problem to the system reliability evaluation for a stochastic-flow network. Comput. Oper. Res. 30, 567–575 (2003)

    Article  MATH  Google Scholar 

  37. Calvete, H.I.; del-Pozo, L.; Iranzo, J.A.: Algorithms for the quickest path problem and the reliable quickest path problem. Comput. Manag. Sci. 9, 255–272 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lin, Y.-K.: Spare routing reliability for a stochastic flow network through two minimal paths under budget constraint. IEEE Trans. Reliab. 59, 2–10 (2010)

    Article  Google Scholar 

  39. Lin, Y.-K.; Huang, C.-F.; Yeng, L.C.-L.; Cho, Y.-L.: Project reliability interval for a stochastic project network subject to time and budget constraints. IEEE Trans. Reliab. 66, 689–699 (2017)

    Article  Google Scholar 

  40. Chołda, P.; Jaglarz, P.: Energy-efficiency versus resilience: risk awareness view on dimensioning of optical networks with a sleep mode. Photonic Netw. Commun. 30, 43–58 (2015)

    Article  Google Scholar 

  41. Chołda, P.; Jaglarz, P.: Optimization/simulation-based risk mitigation in resilient green communication networks. J. Netw. Comput. Appl. 59, 134–157 (2016)

    Article  Google Scholar 

  42. Deng, X.; He, L.; Li, X.; Liu, Q.; Cai, L.; Chen, Z.: A reliable QoS-aware routing scheme for neighbor area network in smart grid. Peer-to-Peer Netw. Appl. 9, 616–627 (2016)

    Article  Google Scholar 

  43. Lin, Y.-K.; Huang, C.-F.; Chang, P.-C.: System reliability evaluation of a touch panel manufacturing system with defect rate and reworking. Reliab. Eng. Syst. Saf. 118, 51–60 (2013)

    Article  Google Scholar 

  44. Lin, Y.-K.; Chang, P.-C.: Evaluate the system reliability for a manufacturing network with reworking actions. Reliab. Eng. Syst. Saf. 106, 127–137 (2012)

    Article  Google Scholar 

  45. Gungor, V.C.; Hancke, G.P.: Industrial wireless sensor networks: challenges, design principles, and technical approaches. IEEE Trans. Ind. Electron. 56, 4258–4265 (2009)

    Article  Google Scholar 

  46. Chen, Y.; Chin, Y.: The quickest path problem. Comput. Oper. Res. 17, 153–161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  47. Chen, G.-H.; Hung, Y.-C.: On the quickest path problem. Inf. Process. Lett. 46, 125–128 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  48. Følstad, E.L.; Helvik, B.E.: The cost for meeting SLA dependability requirements; implications for customers and providers. Reliab. Eng. Syst. Saf. 145, 136–146 (2016)

    Article  Google Scholar 

  49. Vajanapoom, K.: Risk-based survivable network design. University of Pittsburgh (2008)

  50. Vajanapoom, K.; Tipper, D.; Akavipat, S.: Risk based resilient network design. Telecommun. Syst. 52, 799–811 (2013)

    Google Scholar 

  51. Rausand, M.; Arnljot, H.: System Reliability Theory: Models, Statistical Methods, and Applications, vol. 396. Wiley, London (2004)

    MATH  Google Scholar 

  52. Gopal, K.; Kumar, R.: An algorithm for computing the best-performing path in a computer network. Int. J. Perform. Eng. 3, 203–212 (2007)

    Google Scholar 

  53. Fredman, M.L.; Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM (JACM) 34, 596–615 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhang, S.; Martel, C.; Mukherjee, B.: Dynamic traffic grooming in elastic optical networks. IEEE J. Sel. Areas Commun. 31, 4–12 (2013)

    Article  Google Scholar 

  55. Chen, S.; Song, M.; Sahni, S.: Two techniques for fast computation of constrained shortest paths. In: Global Telecommunications Conference, 2004. GLOBECOM’04. IEEE, pp. 1348–1352 (2004)

  56. Chen, S.; Song, M.; Sahni, S.: Two techniques for fast computation of constrained shortest paths. IEEE/ACM Trans. Netw. (TON) 16, 105–115 (2008)

    Article  Google Scholar 

  57. Sharma, A.; Kumar, R.: A framework for pre-computated multi-constrained quickest QoS path algorithm. J. Telecommun. Electron. Comput. Eng. (JTEC) 9, 73–77 (2017)

    Google Scholar 

Download references

Acknowledgements

Authors are thankful for the financial grant for this paper from the research project titled, “Reliability Modeling and Optimized Planning of Risk-based Resilient Networks” sponsored by Indo-Polish Program under grant DST/INT/POL/P-04/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Kumar, R. Computation of the Reliable and Quickest Data Path for Healthcare Services by Using Service-Level Agreements and Energy Constraints. Arab J Sci Eng 44, 9087–9104 (2019). https://doi.org/10.1007/s13369-019-03836-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03836-4

Keywords

Navigation