Skip to main content

Advertisement

Log in

A 3D Study of an Air-Core Vortex Using HSPIV and Flow Visualization

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A free-surface vortex is a mass of water rotating around an axis perpendicular to the free surface. It can occur when withdrawing water from reservoirs or rivers at hydropower intakes with low submergence. Existing vortex models provide general information about the symmetric vortex structure. The vortex structure occurring in an approach flow at the critical submergence condition is examined in detail. In the laboratory, a steady air-core vortex over a bottom intake was created in a wide recirculating flume, in which the water depth, mean velocity of the approach flow and intake discharge could be adjusted. Flow visualization shows that the approach flow results in a non-symmetrical velocity distribution in the vortex throughout the flow depth. The detailed set of high-speed particle image velocimetry data in a series of horizontal and vertical planes was used to observe the formation and evolution of the three-dimensional flow structure of the strong air-core vortex and determine the origin of the vortex. Analysis of these data revealed a complex three-dimensional vortex structure due to the approach flow interacting with the air-core vortex forming a secondary vortex originating at the mixing zone upstream of the vortex, identified by a zero downstream velocity component, and feeding into the upstream side of the intake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Denny, D.F.: An experimental study of air-entraining vortices in pump sumps. Proc. Inst. Mech. Eng. 170(1), 106–125 (1956)

    Article  Google Scholar 

  2. Hecker, G.E.: Fundamentals of vortex intake flow. Conclusions, [chapters 2 and 8]. In: Knauss, J. (ed.) Swirling Flow Problems at Intakes. IAHR Hydraulic Structures Design Manual. Balkema, Rotterdam (1987)

    Google Scholar 

  3. Anwar, H.O.; Weller, J.A.; Amphlett, M.B.: Similarity of free-vortex at horizontal intake. J. Hydraul. Res. 16(2), 95–105 (1987)

    Article  Google Scholar 

  4. Gulliver, J.S.; Rindels, A.J.: Weak vortices at vertical intakes. J. Hydraul. Eng. ASCE 113(9), 1101–1116 (1987)

    Article  Google Scholar 

  5. Hite, J.E.; Mih, W.C.: Velocity of air-core vortices at hydraulic intakes. J. Hydraul. Eng. ASCE 120(3), 284–297 (1994)

    Article  Google Scholar 

  6. Jain, A.K.; Rangaraju, K.G.; Garde, R.J.: Vortex formation at vertical pipe intakes. J. Hydraul. Div. ASCE 104(10), 1429–1448 (1978)

    Google Scholar 

  7. Borghei, S.M.; Kabiri-Samani, A.R.: Effect of anti-vortex plates on critical submergence at a vertical intake. Sci. Iran. 17(2), 89–95 (2010)

    Google Scholar 

  8. Naderi, V.; Farsadizadeh, D.; Hosseinzadeh-Dalir, A.; Arvanaghi, H.: Experimental study of bell-mouth intakes on discharge coefficient. J. Civil Eng. Urban. 3(6), 368–371 (2013)

    Google Scholar 

  9. Tastan, K.: Scale and flow boundary effects for air-entraining vortices. Water Manag. 170(4), 1–9 (2016)

    MathSciNet  Google Scholar 

  10. Shemsi, R.; Kabiri-Samani, A.: Swirling flow at vertical shaft spillways with circular piano-key inlets. J. Hydraul. Res. 55(2), 248–258 (2017)

    Article  Google Scholar 

  11. Tastan, K.; Yildirim, N.: Effects of intake geometry on the occurrence of a free-surface vortex. J. Hydraul. Eng. 144(4), 04018009 (2018)

    Article  Google Scholar 

  12. Gao, X.; Zhang, H.; Liu, J.; Sun, B.; Tian, Y.: Numerical investigation of flow in a vertical pipe inlet/outlet with a horizontal anti-vortex plate: effect of diversion orifices height and divergence angle. Eng. Appl. Comput. Fluid Mech. 12(1), 182–194 (2018)

    Google Scholar 

  13. Rankine, W.J.M.: A Manual of Applied Mechanics. Charles Griffin, London (1858)

    MATH  Google Scholar 

  14. Burgers, J.M.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948)

    Article  MathSciNet  Google Scholar 

  15. Rott, N.: On the viscous core of a line vortex. Z. Angew. Math. Phys. 9b, 543–553 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  16. Odgaard, A.J.: Free-surface air core vortex. J. Hydraul. Eng. ASCE 112(7), 610–620 (1986)

    Article  Google Scholar 

  17. Mih, W.C.: Analysis of fine particle concentrations in a combined vortex. J. Hydraul. Res. 28(3), 392–396 (1990)

    Article  Google Scholar 

  18. Wang, Y.K.; Jiang, C.B.; Liang, D.F.: Comparison between empirical formulae of intake vortices. J. Hydraul. Res. 49(1), 113–116 (2011)

    Article  Google Scholar 

  19. Sarkardeh, H.; Zarrati, A.R.; Roshan, R.: Effect of intake head wall and trash rack on vortices. J. Hydraul. Res. 48(1), 108–112 (2010)

    Article  Google Scholar 

  20. Li, H.; Chen, H.; Zheng, M.A.; Zhou, Y.: Experimental and numerical investigation of free surface vortex. J. Hydrodyn. 20(4), 485–491 (2008)

    Article  Google Scholar 

  21. Rajendran, V.P.; Patel, V.C.: Measurement of vortices in model pump-intake bay by PIV. J. Hydraul. Eng. ASCE 126(5), 322–334 (2000)

    Article  Google Scholar 

  22. Okamura, T.; Kamemoto, K.; Matsui, J.: CFD prediction and model experiment on suction vortices in pump sump. In: Proceedings of 9th Asian International Conference on Fluid Machinery, October, Jeju, South Korea, AICFM9-053 (2007)

  23. Suerich-Gulick, F.; Gaskin, S.J.; Villeneuve, M.; Parkinson, E.: Characteristics of free surface vortices at low head hydropower intakes. J. Hydraul. Res. 140, 291–299 (2014a)

    Article  Google Scholar 

  24. Suerich-Gulick, F.; Gaskin, S.J.; Villeneuve, M.; Parkinson, E.: Free surface intake vortices: theoretical model and measurements. J. Hydraul. Res. 52(4), 502–512 (2014b)

    Article  Google Scholar 

  25. Möller, G.: Vortex-induced air entrainment rate at intakes. Dissertation, Eidgenössische Technische Hochschule ETH Zürich. Nr. 21277 (2013)

  26. Mulligan, S.; Casserly, J.; Sherlock, R.: Experimental and numerical modelling of free-surface turbulent flows in full air-core water vortices. In: Gourbesville, P., Cunge, J., Caignaert, G. (eds.) Advances in Hydroinformatics, pp. 549–569. Springer WaterSpringer, Singapore (2016)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadoud Naderi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, V., Farsadizadeh, D., Lin, C. et al. A 3D Study of an Air-Core Vortex Using HSPIV and Flow Visualization. Arab J Sci Eng 44, 8573–8584 (2019). https://doi.org/10.1007/s13369-019-03764-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03764-3

Keywords

Navigation