Skip to main content
Log in

Effect of Silica/Graphene Nanohybrid Particles on the Mechanical Properties of Epoxy Coatings

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Epoxy resins are used as coating materials, but the practical use of epoxy coatings in industries is limited due to their weak mechanical properties. In the present paper, different amounts of silica nanoparticles (\(\hbox {SiO}_{2})\) and graphene nanoplatelets (GNPs) were introduced separately and together into an epoxy coating matrix as reinforcements. Graphene, a newly discovered carbon allotrope, has been found to improve the mechanical properties of the polymer composites in which it is dispersed. Silica particles are also known to improve the mechanical properties of composites. In this study, mechanical, physical and thermal properties of the epoxy coatings are considered as multidimensional by the macro- and microanalyses. The experimental results showed that after the addition of GNPs into the epoxy matrix, the flexibility and impact resistance of the coatings increased by 8.3 and 157.1%, respectively, in relation to neat epoxy. The microhardness increased by 53.8% and penetration depth, which is indicative of the scratch resistance, decreased by 29.7%, with the addition of \(\hbox {SiO}_{2}\)–GNPs nanohybrid. A remarkable synergistic effect was observed between the GNPs and \(\hbox {SiO}_{2}\), which improved the hardness and the scratch resistance of the epoxy coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghasemi-Kahrizsangi, A.; Neshati, J.; Shariatpanahi, H.; Akbarinezhad, E.: Improving the UV degradation resistance of epoxy coatings using modified carbon black nanoparticles. Prog. Org. Coat. 85, 199–207 (2015)

    Article  Google Scholar 

  2. Haeri, S.Z.; Ramezanzadeh, B.; Asghari, M.: A novel fabrication of a high performance SiO2–graphene oxide (GO) nanohybrids: characterization of thermal properties of epoxy nanocomposites filled with SiO2-GO nanohybrids. J. Colloid Interface Sci. 493, 111–122 (2017)

    Article  Google Scholar 

  3. Conradi, M.; Kocijan, A.; Kek-Merl, D.; Zorko, M.; Verpoest, I.: Mechanical and anticorrosion properties of nanosilica-filled epoxy-resin composite coatings. Appl. Surf. Sci. 292, 432–437 (2014)

    Article  Google Scholar 

  4. Boumaza, M.; Khan, R.; Zahrani, S.: An experimental investigation of the effects of nanoparticles on the mechanical properties of epoxy coating. Thin Solid Films 620, 160–164 (2016)

    Article  Google Scholar 

  5. Perera, D.: Effect of pigmentation on organic coating characteristics. Prog. Org. Coat. 50, 247–262 (2004)

    Article  Google Scholar 

  6. Kotnarowska, D.; Przerwa, M.; Szumiata, T.: Resistance to erosive wear of epoxy-polyurethane coating modified with nanofillers. J. Mater. Sci. Res. 3(2) (2014)

  7. Avella, M.; Errico, M.E.; Martelli, S.; Martuscelli, E.: Preparation methodologies of polymer matrix nanocomposites. Appl. Organomet. Chem. 15, 434–439 (2001)

    Article  Google Scholar 

  8. Rong, M.Z.; Zhang, M.Q.; Liu, H.; Zeng, H.M.; Wetzel, B.; Friedrich, K.: Microstructure and tribological behavior of polymeric nanocomposites. Ind. Lubr. Tribol. 53, 72–7 (2001)

    Article  Google Scholar 

  9. Wetzel, B.; Haupert, F.; Zhang, M.Q.: Epoxy nanocomposites with high mechanical and tribological performance. Compos. Sci. Technol. 63, 2055–2067 (2003)

    Article  Google Scholar 

  10. Ng, C.B.; Schadler, L.S.; Siegel, R.W.: Synthesis and mechanical properties of TiO2-epoxy nanocomposites. Nanostruct. Mater. 12, 507–510 (1999)

    Article  Google Scholar 

  11. Zhang, M.Q.; Rong, M.Z.; Yu, S.L.; Wetzel, B.; Friedrcih, K.: Improvement of the tribological performance of epoxy by the addition of irradiation grafted nano-inorganic particles. Macromol. Mater. Eng. 287, 111–115 (2002)

    Article  Google Scholar 

  12. Naganuma, T.; Kagawa, Y.: Effect of particle size on the optically transparent nano meter-order glass particle-dispersed epoxy matrix composites. Compos. Sci. Technol. 62, 1187 (2002)

    Article  Google Scholar 

  13. Ramezanzadeh, B.; Attar, M.M.: Characterization of the fracture behavior and viscoelastic properties of epoxy polyamide coating reinforced with nanometer and micrometer sized ZnO particles. Prog. Org. Coat. 71, 242–249 (2011)

    Article  Google Scholar 

  14. Ghanbari, A.; Attar, M.M.: A study on the anticorrosion performance of epoxy nanocomposite coatings containing epoxy-silane treated nano-silica on mild steel substrate. Ind. Eng. Chem. 23, 145–153 (2015)

    Article  Google Scholar 

  15. Yousri, O.M.; Abdellatif, M.H.; Bassioni, G.: Effect of Al\(_{2}\)O\(_{3}\) nanoparticles on the mechanical and physical properties of epoxy composite. Arab. J. Sci. Eng. 43, 1511–1517 (2018)

    Article  Google Scholar 

  16. Monetta, T.; Acquesta, A.; Bellucci, F.: Graphene/epoxy coating as multifunctional material for aircraft structures. Aerospace 2, 423–434 (2015)

    Article  Google Scholar 

  17. Ramezanzadeh, B.; Niroumandrad, S.; Ahmadi, A.; Mahdavian, M.; Mohamadzadeh Moghadam, M.H.: Enhancement of barrier and corrosion protection performance of anepoxy coating through wet transfer of amino functionalized grapheneoxide. Corros. Sci. 103, 283–304 (2016)

    Article  Google Scholar 

  18. Barletta, M.; Vesco, S.; Puopolo, M.; Tagliaferri, V.: Graphene reinforced UV-curable epoxy resins: Design, manufacture and material performance. Prog. Org. Coat. 90, 414–424 (2016)

    Article  Google Scholar 

  19. Chang, C.H.; Huang, T.C.; Peng, C.W.; Yeh, T.C.; Lu, H.I.; Hung, W.I.; Weng, C.J.; Yang, T.I.; Yeh, J.M.: Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 50, 5044–5051 (2012)

    Article  Google Scholar 

  20. Chen, C.; Qiu, S.; Cui, M.; Qin, S.; Yan, G.; Zhao, H.; Wang, L.; Xue, Q.: Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene. Carbon 114, 356–366 (2017)

    Article  Google Scholar 

  21. Dong, R.; Liu, L.: Preparation and properties of acrylic resin coating modified byfunctional graphene oxide. Appl. Surf. Sci. 368, 378–387 (2016)

    Article  Google Scholar 

  22. Ramezanzadeh, B.; Ahmadi, A.; Mahdavian, M.: Enhancement of the corrosion protection performance and cathodicdelamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol-gel based silane composite film filled with functionalized graphene oxide nanosheets. Corros. Sci. 109, 182–205 (2016)

    Article  Google Scholar 

  23. Ma, Y.; Di, H.; Yu, Z.; Liang, L.; Lv, L.; Pan, Y.; Zhang, Y.; Yin, D.: Fabrication of silica-decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research. Appl. Surf. Sci. 360, 936–945 (2016)

    Article  Google Scholar 

  24. Pourhashem, S.; Vaezi, M.R.; Rashidi, A.; Bagherzadeh, M.R.: Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel. Corros. Sci. 115, 78–92 (2017)

    Article  Google Scholar 

  25. Yu, Z.; Di, H.; Ma, Y.; Lv, L.; Pan, Y.; Zhang, C.; He, Y.: Fabrication of graphene oxide-alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings. Appl. Surf. Sci. 351, 986–996 (2015)

    Article  Google Scholar 

  26. Chang, K.C.; Hsu, M.H.; Lu, H.I.; Lai, M.C.; Liu, P.J.; Hsu, C.H.; Ji, W.F.; Chuang, T.L.; Wei, Y.; Yeh, J.M.; Liu, W.R.: Room-temperature cured hydrophobic epoxy/graphene composites as corrosion inhibitör for cold-rolled steel. Carbon 66, 144–153 (2014)

    Article  Google Scholar 

  27. Xia, W.; Xue, H.; Wang, J.; Wang, T.; Song, L.; Guo, H.; Fan, X.; Gong, H.; He, J.: Functionalized graphene serving as free radical scavenger and corrosion protection in gamma-irradiated epoxy composites. Carbon 101, 315–323 (2016)

    Article  Google Scholar 

  28. Longhi, M.; Zini, L.P.; Pistor, V.; Kunst, S.R.; Zattera, A.J.: Evaluation of the mechanic and electrochemical properties of an epoxy coating with addition of different polyhedral oligomeric silsesquioxanes (POSS) applied on substrate of low alloy steel. Mater. Res. 20, 1388–1401 (2017)

    Article  Google Scholar 

  29. Tong, Y.; Bohmb, S.; Song, M.: Graphene based materials and their composites as coatings. Austin J. Nanomed. Nanotech. 1, 1003 (2013)

    Google Scholar 

  30. Bastani, S.; Darani, M.K.: Ch. 8. Graphene-based UV-curable nanocomposite coatings. In: Milne, W.I., Cole, M. (eds.) Carbon Nanotechnology, pp. 187–209. One Central Press, Cheshire (2015)

    Google Scholar 

  31. Jiang, T.; Kuila, Y.; Kim, N.H.; Ku, B.C.; Lee, J.H.: Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites. Compos. Sci. Technol. 79, 115–125 (2013)

    Article  Google Scholar 

  32. Rahmanian, S.; Suraya, A.R.; Roshanravanc, B.; Othmand, R.N.; Nasser, A.H.; Zahari, R.; Zainudin, E.S.: The influence of multiscale fillers on the rheological and mechanical properties of carbon-nanotube-silica-reinforced epoxy composite. J. Mater. Des. 88, 227–235 (2015)

    Article  Google Scholar 

  33. Barletta, M.; Vesco, S.; Puopolo, M.; Tagliaferri, V.: High performance composite coatings on plastics: UV-curable cycloaliphatic epoxy resins reinforced by graphene or graphene derivatives. Surf. & Coat. Tech. 272, 322–336 (2015)

    Article  Google Scholar 

  34. Spirkova, M.; Slouf, M.; Blahova, O.; Farkacova, T.; Benesova, J.: Submicrometer characterization of surfaces of epoxy-based organic–inorganic nanocomposite coatings. A comparison of AFM study with currently used testing techniques. J. Appl. Polym. Sci. 102, 5763–5774 (2006)

    Article  Google Scholar 

  35. Martin-Gallego, M.; Verdejo, R.; Lopez-Manchado, M.A.; Sangermano, M.: Epoxy-graphene UV-cured nanocomposites. Polymer 52, 4664–4669 (2011)

    Article  Google Scholar 

  36. Shokrieh, M.M.; Hosseinkhani, M.R.; Naimi-Jamal, M.R.; Tourani, H.: Nanoindentation and nanoscratch investigations on graphene-based nanocomposites. Poly. Test. 32, 45–51 (2013)

    Article  Google Scholar 

  37. Sangermano, M.; Messori, M.; Martin Galleco, M.; Rizza, G.; Voit, B.: Scratch resistant tough nanocomposite epoxy coatings based on hyperbranched polyesters. Polymer 50, 5647–5652 (2009)

    Article  Google Scholar 

  38. Sangermano, M.; Malucelli, G.; Amerio, E.; Priola, A.; Billi, E.; Rizza, G.: Photopolymerization of epoxy coatings containing silica nanoparticles. Prog. Org. Coat. 54, 134–138 (2005)

    Article  Google Scholar 

  39. Becker, O.; Varley, R.; Simon, G.: Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins. Polymer 43, 4365–4373 (2002)

    Article  Google Scholar 

  40. Shi, X.; Nguyen, T.A.; Suo, Z.; Liu, Y.; Avci, R.: Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating. Surf. Coat. Techol. 204, 237–245 (2009)

    Article  Google Scholar 

  41. Dhoke, S.K.; Khanna, A.S.: Electrochemical behavior of nano-iron oxide modified alkyd based waterborne coatings. Mater. Chem. Phys. 117, 550–556 (2009)

    Article  Google Scholar 

  42. Guo, Q.; Zhu, P.; Li, G.; Wen, J.; Wang, T.; Lu, D.; Sun, R.; Wong, C.: Study on the effects of interfacial interaction on the rheological and thermal performance of silica nanoparticles reinforced epoxy nanocomposites. Comp. Part B 116, 388–397 (2017)

    Article  Google Scholar 

  43. Zhou, T.; Wang, X.; Liu, X.; Lai, J.: Effect of silane treatment of carboxylic-functionalized multi- walled carbon nanotubes on the thermal properties of epoxy nanocomposites. eXPRESS Polym. Lett. 4, 217–226 (2010)

    Article  Google Scholar 

  44. Khun, N.W.; Rincon Troconis, B.C.; Frankel, G.S.: Effects of carbon nanotube content on adhesion strength and wear and corrosion resistance of epoxy composite coatings on AA2024-T3. Prog. Org. Coat. 77, 72–80 (2014)

    Article  Google Scholar 

  45. Patil, D.P.; Phalak, G.A.; Mhaske, S.T.: Design and synthesis of bio-based UV curable PU acrylate resin from itaconic acid for coating applications. Des. Mono. Poly. 20, 269–282 (2017)

    Article  Google Scholar 

  46. Qi, B.; Lu, S.R.; Xiao, X.E.; Pan, L.L.; Tan, F.Z.; Yu, J.H.: Enhanced thermal and mechanical properties of epoxy composites by mixing thermotropic liquid crystalline epoxy grafted graphene oxide. eXPRESS Polym. Lett. 8(7), 467–479 (2014)

    Article  Google Scholar 

  47. Wei, J.; Saharudin, M.S.; Vo, T.; Inam, F.: Dichlorobenzene: an effective solvent for epoxy/graphene nanocomposites preparation. R. Soc. Open Sci. 4, 170778 (2017)

    Article  Google Scholar 

  48. Naebe, M.; Sandlin, J.; Crouch, I.; Fox, B.: Novel polymer-ceramic composites for protection against ballistic fragments. Poly. Comp. 34, 180–186 (2013)

    Article  Google Scholar 

  49. Silvestre, J.; Silvestre, N.; de Brito, J.: An overview on the improvement of mechanical properties of ceramics nanocomposites. J. Nanomater 2015, 106494 (2015)

    Article  Google Scholar 

  50. Wua, S.; Ladani, R.B.; Zhang, J.; Bafekrpour, E.; Ghorbani, K.; Mouritz, A.P.; Kinloch, A.J.; Wang, C.H.: Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites. Carbon 94, 607–618 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Fund of Aksaray University. Project Number: 2016-007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazliye Karabork.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozcan, U.E., Karabork, F., Yazman, S. et al. Effect of Silica/Graphene Nanohybrid Particles on the Mechanical Properties of Epoxy Coatings. Arab J Sci Eng 44, 5723–5731 (2019). https://doi.org/10.1007/s13369-019-03724-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03724-x

Keywords

Navigation