Skip to main content
Log in

Important Paradigms of the Thermoelastic Waves

  • Research Article - Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper is devoted to the investigation of the propagation of magneto-thermoelastic waves in a rotating monoclinic system. The system is electrically conducting in the presence of an applied magnetic field. A general dispersion relation is obtained for magneto-thermoelastic waves. The propagation of wave produced two elastic waves and two thermal waves. It is found that the elastic waves depend on the applied magnetic field and the rotational frequency, where the thermal waves are independent of these effects. The numerical simulations are presented in this article to support the findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ezzat, M.A.: State space approach to solids and fluids. Can. J. Phys. 86(11), 1241–1250 (2008)

    Article  MATH  Google Scholar 

  2. Ezzat, M.A.; El-Bary, A.A.: Application of fractional order theory of magneto-thermoelasticity to an infinite perfect conducting body with a cylindrical cavity. Microsyst. Technol. 23(7), 2447–2458 (2017)

    Article  Google Scholar 

  3. Arshad, S.; Siddiqui, A.M.; Sohail, A.; Maqbool, K.; Li, Z.: Comparison of optimal homotopy analysis method and fractional homotopy analysis transform method for the dynamical analysis of fractional order optical solitons. Adv. Mech. Eng. 9(3), 1687814017692946 (2017)

    Article  Google Scholar 

  4. Abbas, I.A.; Abo-Dahab, S.M.: On the numerical solution of thermal shock problem for generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity. J. Comput. Theor. Nanosci. 11(3), 607–618 (2014)

    Article  Google Scholar 

  5. Wajid, H.A.; Sohail, A.: Compact modified implicit finite element schemes for wave propagation problems with superior dispersive properties. Arab. J. Sci. Eng. 41(11), 4613–4624 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sohail, A.; Rees, J.M.; Zimmerman, W.B.: Analysis of capillary-gravity waves using the discrete periodic inverse scattering transform. Colloids Surf. A Physicochem. Eng. Asp. 391(1–3), 42–50 (2011)

    Article  Google Scholar 

  7. Cherifi, R.O.; Ivanovskaya, V.; Phillips, L.C.; Zobelli, A.; Infante, I.C.; Jacquet, E.; Garcia, V.; Fusil, S.; Briddon, P.R.; Guiblin, N.; Mougin, A.: Electric-field control of magnetic order above room temperature. Nat. Mater. 13(4), 345 (2014)

    Article  Google Scholar 

  8. Zhdanov, V.M.: Transport Processes in Multicomponent Plasma. CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  9. Kittel, C.; McEuen, P.; McEuen, P.: Introduction to Solid State Physics, pp. 323–324. Wiley, New York (1996)

    Google Scholar 

  10. Han, T.; Bai, X.; Gao, D.; Thong, J.T.; Li, B.; Qiu, C.W.: Experimental demonstration of a bilayer thermal cloak. Phys. Rev. Lett. 112(5), 054302 (2014)

    Article  Google Scholar 

  11. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lord, H.W.; Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  MATH  Google Scholar 

  13. Green, A.E.; Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. A 432(1885), 171–194 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Green, A.E.; Naghdi, P.M.: An unbounded heat wave in an elastic solid. J. Therm. Stresses 15, 253–264 (1992)

    Article  Google Scholar 

  15. Green, A.E.; Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Knopoff, L.: The interaction between elastic wave motions and a magnetic field in electrical conductors. J. Geophys. Res. 60(4), 441–456 (1955)

    Article  Google Scholar 

  17. Kaliski, S.; Petykiewicz, J.: Equation of motion coupled with the field of temperature in a magnetic field involving mechanical and electrical relaxation for isotropic bodies. Proc. Vib. Probl. 4, 1–12 (1959)

    Google Scholar 

  18. Paria, G.: On magneto-thermo-elastic plane waves. Math. Proc. Camb. Philos. Soc. 58(3), 527–531 (1962)

    Article  MathSciNet  Google Scholar 

  19. Purushothama, C.M.: Magneto-thermo-elastic plane waves. Math. Proc. Camb. Philos. Soc. 61(4), 939–944 (1965)

    Article  MathSciNet  Google Scholar 

  20. Singh, B.; Yadav, A.K.: Plane waves in a rotating monoclinic magnetothermoelastic medium. J. Eng. Phys. Thermophys. 89(2), 428–440 (2016)

    Article  MathSciNet  Google Scholar 

  21. Landersj, C.; Hg, C.; Maliniak, A.; Widmalm, G.: NMR investigation of a tetrasaccharide using residual dipolar couplings in dilute liquid crystalline media: effect of the environment. J. Phys. Chem. B 104(23), 5618–5624 (2000)

    Article  Google Scholar 

  22. Chattopadhyay, A.; Gupta, S.; Singh, A.K.; Sahu, S.A.: Propagation of shear waves in an irregular magnetoelastic monoclinic layer sandwiched between two isotropic half-spaces. Int. J. Eng. Sci. Technol. 1(1), 228–244 (2009)

    Google Scholar 

  23. Alfven, H.: On existence of electromagnetic-hydrodynamic waves: Ark Mat Astron Fys A29, 1–7 (1942)

    Google Scholar 

  24. Achenbach, J.D.: Wave Propagation in Elastic Solids, vol. 16. North Holland Series in Applied Mathematics and MechanicsNorth Holland, Amsterdam (1987)

    MATH  Google Scholar 

  25. Lide, D.R.: Magnetic susceptibility of the elements and inorganic compounds. CRC Handb. Chem. Phys. 86, 130–135 (2005)

    Google Scholar 

  26. Khan, A.A.; Zaman, A.; Yaseen, S.: Impact of two relaxation times on thermal, P and SV waves at interface with magnetic field and temperature dependent elastic moduli. Results Phys. 8, 324–335 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayesha Sohail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.A., Sohail, A., Bég, O.A. et al. Important Paradigms of the Thermoelastic Waves. Arab J Sci Eng 44, 663–671 (2019). https://doi.org/10.1007/s13369-018-3649-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3649-5

Keywords

Navigation