Skip to main content
Log in

Ageing Behaviour of Sc-Doped Cu–Zn–Al Shape Memory Alloys

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The effect of scandium (Sc), when added in trace, on the ageing behaviour of Cu–Zn–Al shape memory alloy was investigated in the present work. Cu–Zn–Al shape memory alloy was prepared by melting 70:30 brass using commercial grade Cu strips and Al chips. Sc was added using Al–Sc 2 wt% master alloy at the time of melting, and the final composition was adjusted to 0.1 wt% Sc. Chemical composition of the alloys was analysed by using EDAX and spectrometer. The influence of Sc on mechanical properties under different ageing conditions were primarily evaluated by Vickers hardness test. Optical and scanning electron microscopy (SEM) was used to analyse the microstructure. Differential scanning calorimetry was used to measure the transformation temperatures, correspond to martensite to austenite or the reverse transformation. Thermo-Calc software was used to construct a phase fraction diagram as a function of temperature to obtain the evolving phases during quenching and subsequent ageing process for both of the alloy systems. The ageing behaviour was also examined using XRD and SEM characterization and explained in the light of phase predictions obtained from the thermodynamic calculations. Subsequently, transmission electron microscopy investigation was carried out to evaluate the influence of Sc on the size and habit planes of the precipitates in Cu–Zn–Al ternary alloy system. Sc has been found to reduce the transformation temperature and consequently increase the mobility of the martensite/austenite interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stalmans, R.; Humbeeck, J.V.; Delaey, L.: Degradation of the shape-memory effect in copper-base alloys. Scr. Metall. Mater. 31(11), 1573–1576 (1994)

    Article  Google Scholar 

  2. Otsuka, K.; Wayman, C.M.: Mechanism of shape memory effect and superelasticity. In: Otsuka, K., Wayman, C.M. (eds.) Shape Memory Materials, pp. 27–48. Cambridge University Press, Cambridge (1998)

  3. Tadaki, T.; Otsuka, K.; Shimizu, K.: Shape memory alloys. Ann. Rev. Mater. Sci. 18(1), 25–45 (1988)

    Article  Google Scholar 

  4. Asanović, V.; Delijić, K.; Jauković, N.: A study of transformations of \(\beta \)-phase in Cu–Zn–Al shape memory alloys. Scr. Mater. 58(7), 599–601 (2008)

    Article  Google Scholar 

  5. Funakubo, H.: Shape Memory Alloys. Taylor & Francis, Milton Park (1987)

    Google Scholar 

  6. Dasgupta, R.; Jain, A.K.; Kumar, P.; Hussein, S.; Pandey, A.: Effect of alloying constituents on the martensitic phase formation in some Cu-based SMAs. J. Mater. Res. Technol. 3(3), 264–273 (2014)

    Article  Google Scholar 

  7. Bhattacharya, S.; Bhuniya, A.; Banerjee, M.K.: Influence of minor additions on characteristics of Cu–Al–Ni alloy. Mater. Sci. Technol. 9(8), 654–658 (1993)

    Article  Google Scholar 

  8. Bruke, R.J.: In: Wang, F.F.Y. (ed.) Ceramic Fabrication Processes, p. 331. Academic Press, New York (1976)

  9. Bhuniya, A.K.; Datta, S.; Chattopadhyay, P.P.; Banerjee, M.K.: Effect of trace addition on the microstructural degradation of Cu–Zn–AI shape memory alloy. In: Proceedings of Seminar on Resurgence of Metallic Materials the Current Scenario (ROMM-2002), 24–25 Oct 2002. National Metallurgical Laboratory(CSIR), Jamshedpur (2002)

  10. Miyazaki, S.; Otsuka, K.: Development of shape memory alloys. ISIJ Int. 29(5), 353–377 (1989)

    Article  Google Scholar 

  11. Delaey, L.; Deruyttere, A.; Aernoudt, N.; Roos, J.R.: Shape Memory Effect, Super-Elasticity and Damping in Cu–Zn–Al Alloys. INCRA Research Report (Project No. 238), Feb 1978

  12. Otsuka, K.; Wayman, C.M.: Shape Memory Materials. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  13. Tarhan, E.: Ageing characteristics of copper based shape memory alloys. Ph.D. Dissertation, The Middle East Technical University (2004)

  14. Miyazaki, S.; Otsuka, K.: In: Funakubo, H. (ed.) Shape Memory Alloys, p. 116. Gordon and Breach Science Publishers, Philadelphia (1984)

  15. Tarhan, E.: Ageing characteristics of copper based shape memory alloys. Thesis (2004)

  16. Otsuka, K.; Ren, X.: Mechanism of martensite aging effect. Scr. Mater. 50(2), 207–212 (2004)

    Article  Google Scholar 

  17. Otsuka, K.; Ren, X.: A comparative study of elastic constants of Ti–Ni-based alloys prior to martensitic transformation. Mat. Sci. Eng. A312, 196–206 (2001). https://doi.org/10.1016/S0921-5093(00)01876-1

  18. Ahlers, M.; Pelegrina, J.L.: Ageing of martensite: stabilisation and ferroelasticity in Cu-based shape memory alloys. Mater. Sci. Eng. A 356(1–2), 298–315 (2003)

    Article  Google Scholar 

  19. Guilemany, J.M.; Gill, F.J.: Kinetic grain growth in Cu-Zn-Al shape memory alloys. J. Mater. Sci. 26, 4626 (1991). https://doi.org/10.1007/BF00612397

    Article  Google Scholar 

  20. Adachi, K.S.K.; Hamada, Y.: Formation of (X) phases and origin of grain refinement effect in Cu–Al–Ni shape memory alloys added with titamium. ISIJ Int. 29, 378–387 (1989)

    Article  Google Scholar 

  21. Gil, F.J.; Guilemany, J.M.: Effect of cobalt addition on grain growth kinetics in Cu–Zn–Al shape memory alloys. Intermetallics 6(5), 445–450 (1998)

    Article  Google Scholar 

  22. Bhuniya, A.K.; Chattopadhyay, P.P.; Datta, S.; Banerjee, M.K.: On the degradation of shape memory effect in trace Ti-added Cu–Zn–Al alloy. Mater. Sci. Eng. A 393(1–2), 125–132 (2005)

    Article  Google Scholar 

  23. Bhuniya, A.K.; Chattopadhyay, P.P.; Datta, S.; Banerjee, M.K.: Study on the effect of trace zirconium addition on the microstructural evolution in Cu–Zn–Al shape memory alloy. Mater. Sci. Eng. A 391(1–2), 34–42 (2005)

    Article  Google Scholar 

  24. Xu, J.W.: Effects of Gd addition on microstructure and shape memory effect of Cu–Zn–Al alloy. J. Alloys Compd. 448(1–2), 331–335 (2008)

    Article  Google Scholar 

  25. Røyset, J.; Ryum, N.: Scandium in aluminium alloys. Int. Mater. Rev. 50(1), 19–44 (2005)

    Article  Google Scholar 

  26. Datta, S.; Bhunya, A.; Banerjee, M.K.: Two way shape memory loss in Cu–Zn–Al alloy. Mater. Sci. Eng. A 300(1–2), 291–298 (2001)

    Article  Google Scholar 

  27. Sundman, B.; Jansson, B.; Andersson, J.-O.: The thermo-calc databank system. Calphad 9(2), 153–190 (1985)

    Article  Google Scholar 

  28. Thermo-calc thermodynamic equilibrium calculations. Thermo-Calc Software, Stockholm. http://www.thermocalc.com/thermocalc.com/media/19849/tcal5_extended_info.pdf. Accessed 5 Aug 2018

  29. Deltell, A.; Escoda, L.; Saurina, J.; Suñol, J.J.: Martensitic transformation in Ni–Mn–Sn–Co heusler alloys. Metals 5(2), 695–705 (2015)

    Article  Google Scholar 

  30. Petalis, P.; Makris, N.; Psarras, G.C.: Investigation of the phase transformation behaviour of constrained shape memory alloywires. J. Thermal Anal. Calorim. 84(1), 219–224 (2006)

    Article  Google Scholar 

  31. Cong, D.Y.; Saha, G.; Barnett, M.R.: Thermomechanical properties of Ni–Ti shape memory wires containing nanoscale precipitates induced by stress-assisted ageing. Acta Biomater. 10(12), 5178–5192 (2014)

    Article  Google Scholar 

  32. Lagoudas, D.C.: Shape Memory Alloys: Modeling and Engineering Applications. Springer, New York (2008)

    MATH  Google Scholar 

  33. Dasgupta, R.; Jain, A.K.; Kumar, P.; Hussain, S.; Pandey, A.: Role of alloying additions on the properties of Cu–Al–Mn shape memory alloys. J. Alloys Compd. 620, 60–66 (2015)

    Article  Google Scholar 

  34. Dwight, A.E.; Kimball, C.W.: ScT2X and LnT2X compounds with the MnCu2al-type structure. J. Less Common Met. 127, 179–182 (1987)

    Article  Google Scholar 

  35. Pisch, A.: Al–Cu–Sc (aluminium–copper–scandium). In: Effenberg, G., Ilyenko, S. (eds.) Light Metal Systems, Part 2, pp. 1–8. Springer, Berlin (2005)

    Google Scholar 

  36. Gao, Y.; Zhu, M.; Lai, J.K.L.: Microstructure characterization and effect of thermal cycling and ageing on vanadium-doped Cu–Al–Ni–Mn high-temperature shape memory alloy. J. Mater. Sci. 33(14), 3579–3584 (1998)

    Article  Google Scholar 

  37. Kwarciak, J.: Phase transformations in Cu–Al and Cu–Zn–Al alloys. J. Thermal Anal. Calorim. 31(3), 559–566 (1986)

    Article  Google Scholar 

  38. Occampo, G.: Sur la décomposition thermique après trempe de la\(\beta \) phase de l’alliage Cu–10.1%Al–influence du nickel et du fer. Thesis, Paris (1980)

  39. Greninger, A.B.: The martensite transformation in beta copper-aluminium alloys. AIME Trans. 133, 204–227 (1939)

    Google Scholar 

  40. Castro, M.L.; Romero, R.: Isothermal \(\gamma \) precipitation in a \(\beta \) Cu–Zn–Al alloy. Mater. Sci. Eng. A 255(1–2), 1–6 (1998)

    Article  Google Scholar 

  41. Ahlers, M.; Pelegrina, J.L.: Ageing of martensite: stabilisation and ferroelasticity in Cu-based shape memory alloys. Mater. Sci. Eng. A 356(1–2), 298–315 (2003)

    Article  Google Scholar 

  42. Seguí, C.; Cesari, E.: Characteristics of martensite stabilization in a high temperature Cu–Zn–Al alloy. J. Phys. IV 5(C8), C8-835–C8-840 (1995)

    Google Scholar 

  43. Leu, S.S.; Hu, C.T.: The aging effect on Cu–Zn–Al shape memory alloys with low contents of aluminum. MTA 22(1), 25–33 (1991)

    Article  Google Scholar 

  44. Kwarciak, J.; Bojarski, Z.; Morawiec, H.: Phase transformation in martensite of Cu–12.4% Al. J. Mater. Sci. 21(3), 788–792 (1986)

    Article  Google Scholar 

  45. Leu, S.S.; Hu, C.T.: Effect of aluminum content on precipitation in Cu–Zn–Al shape memory alloys, pp. 593–598. Referred, In: Shuchuan, C., Hsu, T.Y, Fan, Y., Jihau, Z. (eds) Stabilization of Martensite and Ordering of the Parent Phase in a CuZnAl Alloy, Proceedings of ICOMAT-92, Monterey, USA 20–24 July 1992, Perkins, J. (ed.), pp. 599–604. Monterey Institute for Advanced Studies, Monterey (1993)

  46. Kayali, N.; Ozgen, S.; Adiguzel, O.: The influence of ageing on martensite morphology in shape memory CuZnAl alloys. J. Phys. IV 07(C5), C5-317–C5-322 (1997)

    Google Scholar 

  47. Wong, M.J.: Development of precipitation hardenable Al–Sc–Zr–Hf quaternary alloys through thermodynamic modeling, and room-temperature and elevated temperature hardness. ME Thesis, Michigan Technological University (2014)

  48. Fan, Y.: Precipitation strengthening of aluminum by transition metal aluminides. ME Thesis, Worcester Polytechinc Institute (2012)

  49. Kaiser, M.: Effect of trace scandium addition on Al-6 mg alloy. J. Mech. Eng. 36, 12–17 (2006)

    Google Scholar 

  50. Pons, J.; Portier, R.: Accommodation of \(\gamma \)-phase precipitates in CuZnAl shape memory alloys studied by high resolution electron microscopy. Acta Mater. 45, 2109–2120 (1997)

    Article  Google Scholar 

  51. Sen, R.; Ghosh, M.; Kaiser, M.S.: Microstructure-texture-fracture toughness property correlation in annealed Al-6 Mg alloy with minor scandium and zirconium additions. Fatigue Fract. Eng. Mater. Struct. 35, 1071–1078 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr. D.Y. Cong, Prof. M.R. Barnett, and Prof. M. K Banerjee for providing their significant insight and expertise that greatly assisted the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manojit Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, G., Ghosh, M., Antony, A. et al. Ageing Behaviour of Sc-Doped Cu–Zn–Al Shape Memory Alloys. Arab J Sci Eng 44, 1569–1581 (2019). https://doi.org/10.1007/s13369-018-3621-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3621-4

Keywords

Navigation