Skip to main content
Log in

Theoretical Investigation into the Thermo-Mechanical Behaviours of Tunnel Lining During RABT Fire Development

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Safety assessment of tunnel lining after fire is a compulsory work and should be performed based on thermo-mechanical analysis. In this paper, a theoretical method is presented to investigate the thermo-mechanical behaviours of tunnel lining during fire development. The RABT curve is considered in this model, which includes three stages, i.e. temperature rising, temperature holding and cooling. By employing the Laplace transform and series solving method for ordinary differential equations, solutions for the time-dependent temperature and thermo-mechanical stresses are obtained. The unsteady temperature and stress distributions of the tunnel lining are discussed. Based on the limit state analysis, the fire-induced damage of tunnel lining is evaluated. All of the results are presented and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

r, \(\uptheta \) :

Cylindrical coordinates

R :

Dimensionless radius

\(r_{a}\), \(r_{b}\) :

Inner and outer radii

\({{R}}_{a}\), \({{R}}_{\mathrm{b}}\) :

Dimensionless inner and outer radii

\(h_{2}\) :

Heat transfer coefficient on the outer surface

\(\hbox {H}_{2}\) :

Dimensionless heat transfer coefficient on the outer surface

T :

Temperature

\(\Theta \) :

Dimensionless temperature

\(\Theta _{a}\) :

Dimensionless maximum temperature of fire

t :

Time

\(\tau \) :

Dimensionless time

\(\tau _{1}\), \(\tau _{2}\), \(\tau _{3}\) :

Dimensionless time points at the end of the rising, holding and cooling stage

\({T}_{\mathrm{b}}\) :

Temperature of the surrounding medium

\(\Theta _{\mathrm{b}}\) :

Dimensionless temperature of the surrounding medium

\(q_{a}\), \(q_{b}\) :

Pressures on the inner and outer surface

\(Q_{a}\), \(Q_{b}\) :

Dimensionless pressures on the inner and outer surface

X(R,s):

The Laplace transformation of \(\Theta _{1}(R,\tau )\)

s :

The variable of frequency domain corresponding to time domain \(\tau \)

\(\upalpha \); \(\upkappa \); \(\uplambda \) :

Thermal expansion, thermal diffusion and heat conduction coefficients

A; K; \(\Lambda \) :

Dimensionless thermal expansion, thermal diffusion and heat conduction coefficients

\(\upmu \) :

The Poisson’s ratio

E; \(\rho \); c;:

Elastic modulus, density, specific heat capacity

Y; C :

Dimensionless elastic modulus, specific heat capacity

\(\Theta (R, \tau )\) :

Dimensionless temperature field of tunnel lining during fire

U(R,\(\tau \)):

Dimensionless displacement field

\(\Theta _{1}(t)\) :

Dimensionless temperature on the inner surface for the rising stage

\(\Theta _{2}(t)\) :

Dimensionless temperature on the inner surface for the holding stage

\(\Theta _{3}(t)\) :

Dimensionless temperature on the inner surface for the cooling stage

\(\Theta _{1}(R, \tau )\) :

Dimensionless temperature field of tunnel lining for the rising stage

\(\Theta _{2}(R, \tau )\) :

Dimensionless temperature field of tunnel lining for the holding stage

\(\Theta _{3}(R, \tau )\) :

Dimensionless temperature field of tunnel lining for the cooling stage

\(\Sigma _{{r}}(R,\tau ), \Sigma _{\uptheta }(R,\tau \)):

Dimensionless radial and circumferential stress fields

\(r_{{m}}\), \({E}_{{m}}\), \(\alpha _{{m}}\), \(\lambda _{{m}}\), \({T}_{{m}}\) :

Reference values of radius, elastic modulus, thermal expansion coefficients, thermal conductivity coefficients, temperature

RWS curve:

Specified by the Rijkswaterstatt, the Netherlands Ministry of Transport and one of the most widely used fire load curves for tunnels

RABT curve:

German requirement for tunnel fires

References

  1. Khoury, G.A.: Effect of fire on concrete and concrete structures. Prog. Struct. Eng. Mater 2, 429–447 (2000)

    Article  Google Scholar 

  2. Schrefler, B.A.; Brunello, P.; Gawin, D.; Majorana, C.E.; Pesavento, F.: Concrete at high temperature with application to tunnel fire. Comput. Mech. 29(1), 43–51 (2002)

    Article  MATH  Google Scholar 

  3. Lai, J.X.; Wang, X.L.; Qiu, J.L.; Zhang, G.Z.; Chen, J.X.; Xie, Y.L.: A state-of-the-art review of sustainable energy based freeze proof technology for cold-region tunnels in China. Renew. Sust. Energy Rev. 82, 3554–3569 (2018)

    Article  Google Scholar 

  4. Ma, Q.; Guo, R.; Zhao, Z.; Lin, Z.; He, K.: Mechanical properties of concrete at high temperature—a review. Constr. Build. Mater. 93, 371–383 (2015)

    Article  Google Scholar 

  5. Fan, L.F.; Wu, Z.J.; Wan, Z.; Gao, J.W.: Experimental investigation of thermal effects on dynamic behavior of granite. Appl. Therm. Eng. 125, 94–103 (2017)

    Article  Google Scholar 

  6. Kodur, V.K.R.; Dwaikat, M.M.S.; Dwaikat, M.B.: High-temperature properties of concrete for fire resistance modeling of structures. ACI Mater. J. 105(5), 517–527 (2008)

    Google Scholar 

  7. Ahmad, S.; Sallam, Y.S.; Al-Hawas, M.A.: Effects of key factors on compressive and tensile strengths of concrete exposed to elevated temperatures. Arab. J. Sci. Eng. 39(6), 4507–4513 (2014)

    Article  Google Scholar 

  8. Du, S.; Zhang, Y.; Sun, Q.; Gong, W.; Geng, J.; Zhang, K.: Experimental study on color change and compression strength of concrete tunnel lining in a fire. Tunn. Undergr. Sp. Technol. 71, 106–114 (2018)

    Article  Google Scholar 

  9. Hertz, K.D.: Limits of spalling of fire-exposed concrete. Fire Saf. J. 38(2), 103–116 (2003)

    Article  Google Scholar 

  10. Witek, A.; Gawin, D.; Pesavento, F.; Schrefler, B.A.: Finite element analysis of various methods for protection of concrete structures against spalling during fire. Comput. Mech. 39(3), 271–292 (2007)

    Article  MATH  Google Scholar 

  11. Zhang, H.L.; Davie, C.T.: A numerical investigation of the influence of pore pressures and thermally induced stresses for spalling of concrete exposed to elevated temperatures. Fire Saf. J. 59(59), 102–110 (2013)

    Article  Google Scholar 

  12. Zhang, Y.; Zeiml, M.; Pichler, C.; Lackner, R.: Model-based risk assessment of concrete spalling in tunnel linings under fire loading. Eng. Struct. 77, 207–215 (2014)

    Article  Google Scholar 

  13. Guergah, C.; Dimia, M.S.; Guenfoud, M.: Contribution to the numerical modelling of the spalling phenomenon: case of a reinforced concrete beams. Arab. J. Sci. Eng. 2, 1–13 (2017)

    Google Scholar 

  14. Poon, C.S.; Shui, Z.H.; Lam, L.: Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures. Cem. Concr. Res. 34(12), 2215–2222 (2004)

    Article  Google Scholar 

  15. Habel, K.H.; Charron, J.P.; Braike, S.B.; Hooton, D.H.D.; Gauvreau, P.G.; Massicotte, B.M.: Ultra-high performance fibre reinforced concrete mix design in central. Can. J. Civ. Eng. 35(2), 217–224 (2008)

    Article  Google Scholar 

  16. Wu, Z.J.; Fan, L.F.; Liu, Q.S.; Ma, G.W.: Micro-mechanical modeling of the macro-mechanical response and fracture behavior of rock using the numerical manifold method. Eng. Geol. 225, 49–60 (2017)

    Article  Google Scholar 

  17. Gencel, O.: Effect of elevated temperatures on mechanical properties of high-strength concrete containing varying proportions of hematite. Fire Mater. 36, 217–230 (2012)

    Article  Google Scholar 

  18. Ali, F.; Nadjai, A.; Choi, S.: Numerical and experimental investigation of the behavior of high strength concrete columns in fire. Eng. Struct. 32(5), 1236–1243 (2010)

    Article  Google Scholar 

  19. Choi, E.G.; Shin, Y.S.: The structural behavior and simplified thermal analysis of normal-strength and high-strength concrete beams under fire. Eng. Struct. 33(4), 1123–1132 (2011)

    Article  Google Scholar 

  20. Kalifa, P.; Chéné, G.; Gallé, C.: High-temperature behaviour of HPC with polypropylene fibres: from spalling to microstructure. Cem. Concr. Res. 31(10), 1487–1499 (2001)

    Article  Google Scholar 

  21. Maluk, C.; Bisby, L.; Terrasi, G.P.: Effects of polypropylene fibre type and dose on the propensity for heat-induced concrete spalling. Eng. Struct. 141, 584–595 (2017)

    Article  Google Scholar 

  22. Varona, F.B.; Baeza, F.J.; Bru, D.; Ivorra, S.: Influence of high temperature on the mechanical properties of hybrid fiber reinforced normal and high strength concrete. Constr. Build. Mater. 159, 73–82 (2018)

    Article  Google Scholar 

  23. Caner, A.; Zlatanic, S.; Munfah, N.: Structural fire performance of concrete and shotcrete tunnel liners. J. Struct. Eng. 131(12), 1920–1925 (2005)

    Article  Google Scholar 

  24. Caner, A.; Böncü, A.: Structural fire safety of circular concrete railroad tunnel linings. J. Struct. Eng. 135(9), 1081–1092 (2009)

    Article  Google Scholar 

  25. Feist, C.; Aschaber, M.; Hofstetter, G.: Numerical simulation of the load-carrying behavior of RC tunnel structures exposed to fire. Finite Elem. Anal. Des. 45(12), 958–965 (2009)

    Article  Google Scholar 

  26. Guo, J.; Jiang, S.; Zhang, Z.: Fire thermal stress and its damage to subsea immersed tunnel. Proc. Eng. 166, 296–306 (2016)

    Article  Google Scholar 

  27. Capua, D.D.; Mari, A.R.: Nonlinear analysis of reinforced concrete cross-sections exposed to fire. Fire Saf. J. 42(2), 139–149 (2007)

    Article  Google Scholar 

  28. Lai, H.P.; Wang, S.Y.; Xie, Y.L.: Experimental research on temperature field and structure performance under different lining water contents in road tunnel fire. Tunn. Undergr. Sp. Technol. 43, 327–335 (2014)

    Article  Google Scholar 

  29. Zeiml, M.; Lackner, R.; Pesavento, F.; Schrefler, B.A.: Thermo-hydro-chemical couplings considered in safety assessment of shallow tunnels subjected to fire load. Fire Saf. J. 43(2), 83–95 (2008)

    Article  Google Scholar 

  30. Pichler, C.; Lackner, R.; Mang, H.A.: Safety assessment of concrete tunnel linings under fire load. J. Struct. Eng. 132(6), 961–969 (2006)

    Article  Google Scholar 

  31. Gawin, D.; Majorana, C.E.; Schrefler, B.A.: Numerical analysis of hygro-thermal behaviour and damage of concrete at high temperature. Mech. Cohes Frict. Mat. 4(1), 37–74 (2015)

    Article  Google Scholar 

  32. Choi, S.W.; Lee, J.; Chang, S.H.: A holistic numerical approach to simulating the thermal and mechanical behavior of a tunnel lining subject to fire. Tunn. Undergr. Sp. Technol. 35(2), 122–134 (2013)

    Article  Google Scholar 

  33. Shao, Z.S.; Wang, T.J.: Three-dimensional solutions for the stress fields in functionally graded cylindrical panel with finite length and subjected to thermal/mechanical loads. Int. J. Solids Struct. 43(13), 3856–3874 (2006)

    Article  MATH  Google Scholar 

  34. Yan, Z.G.: A Study on Mechanical Behaviors and Fire proof Methods of Tunnel Lining Structure during and after Fire Scenarios. Ph.D. Thesis, Tongji University, Shanghai (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rujia Qiao or Zhushan Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, R., Shao, Z., Wei, W. et al. Theoretical Investigation into the Thermo-Mechanical Behaviours of Tunnel Lining During RABT Fire Development. Arab J Sci Eng 44, 4807–4818 (2019). https://doi.org/10.1007/s13369-018-3555-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3555-x

Keywords

Navigation