Skip to main content
Log in

Discrete-Time Flatness-Based Control Design for LTV MIMO Systems

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper deals with the design of an linear time-varying (LTV) controller for multiple-input multiple-output (MIMO) systems. Using the concept of differential flatness property combined with a dead-beat observer, we propose as a result a two-degree-of-freedom (2-DoF) controller without the need to solve Bezout equation and avoid left and right matrix factorizations in a MIMO case. The main contribution of this paper is to generalize the previous works of Ben Abdallah et al. (in: Conférence Internationale Francophone de l’Automatique, CIFA, 2012, in: International journal of dynamics and control (IJDY). Springer, New York, 2013, in: International conference on control, decision and information technologies, CoDIT, Metz, 2014, Sleimi et al. in: IEEE 4th international conference on control engineering and information technology, CEIT, Hammamet, 2016) to deal with discrete-time flatness-based control for LTV MIMO systems leading to a 2-DoF controller. Simulation results of an academic system are given to illustrate the efficiency of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rigato, G.: Nonlinear Control and Filtring Using Differential Flatness Approaches: Application on Electromechanical Systems. Springer, Berlin (2015)

    Book  Google Scholar 

  2. Markus, E.; Agee, J.; Jimoh, A.: Flat control of industrial robotic manipulators. Robot. Auton. Syst. 87, 226–236 (2017)

    Article  Google Scholar 

  3. Fliess, M.; Levine, J.; Martin, P.; Rouchon, P.: Flatness and detect of non-linear systems: introductory theory and examples. Int. J. Control 61(6), 1327–1361 (1995)

    Article  MATH  Google Scholar 

  4. Rotella, F.; Carrillo, F.; Ayadi, M.: Digital flatness-based robust controller applied to a thermal process. In: IEEE International Conference on Control applications, pp. 936–941 (2001)

  5. Schroidel, F.; Essam, M.; Adel, D.: Parameter space approach boud state feedback control of LTV systems. In: 22nd Mediterranean Conference on Control and Automation (MED). June 16–19 (2014)

  6. Gracy, S.; Garin, F.; Kibangou, Y.A.: Strong structural input and state observability of LTV network systems with multipe unknown inputs. In: IFAC World Congress, pp. 7618–7623 (2017)

  7. Nguyen, H.N.: Constrained Control of Uncertain, Time-Varying, Discrete-Time Systems. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  8. Utkin, V.I.: Variable structure systems with sliding mode. IEEE Trans. Autom. Control 22(2), 212–222 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Decarlo, R.A.; Zak, S.H.; Mathews, G.: Variable structure conrol of nonlinear multivariable systems: a tutorial. Proc. IEEE 76, 3 (1988)

    Article  Google Scholar 

  10. Levigne, J.: Analysis and Control of Nonlinear Systems: A Flatness-Based Approach. Springer, Berlin (2009)

    Book  Google Scholar 

  11. Aimene, M.; Payman, A.; Dakyo, B.: Flatness-based control of a variable-speed wind-energy system connected to the grid. In: Ecologgical Vehicles and Renewable Energy (2014)

  12. Xu, Y.; Li, F.; Jin, Z.; Huang, C.: Flatness-based adaptative control (FBAC) of STATCOM. Electr. Power Syst. Res. 122, 76–85 (2015)

    Article  Google Scholar 

  13. Ben Abdallah, M.; Ayadi, M.; Rotella, F.; Benrejeb, M.: Régulateurs polynomiaux par platitude pour la commande des systèmes non stationnaires. Conférence Internationale Francophone de l’Automatique, CIFA (2012)

  14. Ben Abdallah, M.; Ayadi, M.; Rotella, F.; Benrejeb, M.: LTV controller flatness-based design for MIMO systems. Int. J. Dyn. Control (IJDY) 2, 335–345 (2013)

    Article  Google Scholar 

  15. Ben Abdallah, M.; Ayadi, M.; Rotella, F.; Benrejeb, M.: Towards a two-degree-of freedom flatness-based controller for MIMO LTI systems. In: International Conference on Control, Decision and Information Technologies, CoDIT, Metz, Novembre (2014)

  16. Ben abdallah, M.: Sur la commande par platitude de systèmes dynamiques SISO et MIMO, Ph.d. thesis. Ecole Nationale d’Ingénieur de Tunis (2014)

  17. Ayadi, M.: Contributions à la commande des systèmes linèaires plats de dimension finie, Ph.d. thesis, Institut National Polytechnique de Toulouse, Tarbes (2002)

  18. Horowitz, I.M.: Synthesis of Feedback Systems. Wiley, Hoboken (1963)

    MATH  Google Scholar 

  19. Gantmacher, F.R.: The Theory of Matrices. Chelsea Publishing Company, Chelsea (1959)

    MATH  Google Scholar 

  20. Gohberg, I.C.; Lancaster, P.; Rodman, L.: Matrix Polynomials. Academic Press, New York (1982)

    MATH  Google Scholar 

  21. Kailath, T.: Linear Systems. Prentice Hall, Englewood Cliffs, New Jersey (1980)

    MATH  Google Scholar 

  22. Stefanidis, P.; Paplinski, A.P.; Gibbard, M.J.: Numerical Operationswith Polynomial Matrices. Lecture Notes in Control and Information Sciences, 171, Berlin, Springer-Verlag (1992)

  23. Chen, C.T.: Linear System Theory and Design. Oxford University Press, New York (1999)

    Google Scholar 

  24. Lai, Y.S.: An algorithm for solving the matrix polynomial equation \(A(s)X(s) + B(s)Y (s) = C(s)\). IEEE Trans. Circuits Syst. 36, 1087–1089 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kamen, E.W.: The poles and zeros of a linear time-varying system. Linear Algebra Appl. 98, 263–289 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. O’Brien, R.T.; Iglesias, P.A.: On the poles and zeros of linear time-varying system. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 48(5), 565–577 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhu, J.J.: Series and parallel d-spectra for multi-input-multi-output linear time-varying systems. In: Proceedings of the South-Eastern Symposium on Systems Theory, Baton Rouge, Los Angelos, 31 March–2 April, pp. 125–129 (1996)

  28. Marinescu, B.; Bourlès, H.: An intrinsic algebraic setting for poles and zeros of linear time-varying systems. Syst. Control Lett. 58, 248–253 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Marinescu, B.: Output feedback pole placement for linear time-varying systems with application to the control of nonlinear systems. Automatica 46(4), 1524–1530 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Silverman, L.M.; Meadows, H.E.: Controllability ans observability in time-variable linear systems. SIMA J. Control Optim. 5, 64–73 (1967)

    Article  MATH  Google Scholar 

  31. Reising, G.; Harting, C.; Svaricek, F.: Strong structural controllability and observability of linear time-varying systems. IEEE Trans. Autom. Control 59, 3087–3092 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Luenberger, D.G.: Canonical forms for multivariable systems. IEEE Trans. Autom. Control 12(3), 290–293 (1967)

    Article  MathSciNet  Google Scholar 

  33. Yong, S.Z.; Paden, B.; Frazzoli, E.: Computational methods for MIMO flat linear systems: flat output characterization. In: Test and Tracking Control. American Control Conference, Chicago, IL, USA (2015)

  34. Fliess, M.; Levine, J.; Martin, P.; Rouchon, P.: A Lie-Backlund approch to equivalence and flatness of non linear systems. IEEE Trans. Autom. Control 44, 922–937 (1999)

    Article  MATH  Google Scholar 

  35. Kamen, E.W.: Fundamentals of Linear Time-Varying Systems. The Control Handbook, Control System Advanced Methods, 2nd edn. Taylor and Francis Group, London (2011)

    Google Scholar 

  36. Sleimi, M.; Ben Abdallah, M.; Ayadi, M.: Digital flatness-based control design for LTI MIMO systems. In: IEEE 4th International Conference on Control Engineering and Information Technology, CEIT, Hammamet (2016)

  37. Ben Abdallah, M.; Ayadi, M.; Rotella, F.; Benrejeb, M.: Time-varying controller based on flatness for nonlinear anti-lock brake system, Systems Science and Control Engineering: An Open Access Journal. Published by Taylor and Francis (2013)

  38. Sun, H.; Butt, S.S.; Asherman, H.: Discrete-time flatness-based control for a twin rotor helicopter with an extended Kalman filter. In: IEEE International Conference on Advanced Intelligent Mechatronics, Banff, AB (2016)

  39. Paulo, S.; Rouchon, P.: Flatness based control of a single qubit gate. IEEE Trans. Autom. Control 53, 775–779 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Butt, S.S.; Parabel, R.; Asherman, H.: Multi-variable flatness-based control of a helicopter with two degrees of freedom. In: International Conference on Control. Decision and Information Technologies, CoDIT, Metz, Novembre (2014)

  41. Fiacchini, M.; Millerioux, G.: Dead-Beat functional observers for discrete-time LPV systems with unknown inputs. IEEE Trans. Autom. Control 58, 3230–3235 (2013)

    Article  Google Scholar 

  42. Chen, M.; Shi, P.; Lim, C.C.: Adaptive neural fault tolerant control of a 3-DOF model helicopter system. IEEE Trans. Syst. Man Cybern. Syst. 46(2), 260–270 (2016)

    Article  Google Scholar 

  43. Zhao, S.; Shmaliy, Y.S.; Ahn, C.K.; Shi, P.: Real-time optimal state estimation of multi-DOF industrial systems using FIR filtering. IEEE Trans. Ind. Inform. 13(3), 967–975 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marouen Sleimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sleimi, M., Ben Abdallah, M. & Ayadi, M. Discrete-Time Flatness-Based Control Design for LTV MIMO Systems. Arab J Sci Eng 44, 2389–2398 (2019). https://doi.org/10.1007/s13369-018-3545-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3545-z

Keywords

Navigation