Skip to main content

Advertisement

Log in

T-Type Multilevel Converter Topologies: A Comprehensive Review

  • Review Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Renewable energy systems integration prefers DC–AC converters of high efficiency, low harmonic injection and small size. Multilevel converter (MLC) is preferred compared to two-level converter thanks to its low harmonic injection, even at low switching frequency values, and accepting high power as well as voltage levels. Among reduced switching devices count MLCs is the T-type topology. This article introduces a review of the different advanced topologies of T-type MLC in comparison with the conventional neutral point clamped converters. The operation of each topology, the design consideration and the performance in low-voltage applications such as AC drive systems, grid-tie integration of renewable energy and power train drive applications are discussed. In addition, the design considerations using enhanced semiconductor switches are elaborated. Different studies regarding MLCs—like common-mode voltage elimination or reduction, open-switch fault diagnosis, open- as well as short-circuit fault tolerance, and DC link capacitor voltage balancing for T-type topologies—are illustrated. Finally, recommendations for future work research directions are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MLC:

Multilevel converter

2L:

Two-level

3L :

Three-level

5L:

Five-level

VSC:

Voltage source converter

VSI:

Voltage source inverter

MV:

Medium voltage

PV:

Photovoltaic

MPPT:

Maximum power point tracking

NPC:

Neutral point clamped

FCC:

Flying capacitor converter

CHB:

Cascaded H-bridge

DC:

Direct current

AC :

Alternating current

FACTS:

Flexible AC transmission system

SVC:

Static VAR compensator

EMI:

Electromagnetic interference

IGBT:

Isolated gate bipolar junction transistor

MOSFET:

Metal oxide semiconductor field effect transistor

MPC:

Model predictive control

CMV:

Common-mode voltage

CMVE:

Common-mode voltage elimination

PWM:

Pulse width modulation

SHEPWM:

Selective harmonic elimination PWM

Y-connected:

Star connected

SVPWM:

Space vector PWM

THD:

Total harmonic distortion

PMSM:

Permanent magnet synchronous machine

ANPC:

Active neutral point clamped

PCB:

Printed circuit board

SiC:

Silicon carbide

Si:

Silicon

ZSI:

Z-source inverter

ST:

Shoot-through

NP:

Neutral point

CB-PWM:

Carrier-based PWM

References

  1. Ali, J.S.M.; Krishnaswamy, V.: An assessment of recent multilevel inverter topologies with reduced power electronics components for renewable applications. Renew. Sustain. Energy Rev. 82, 3379–3399 (2017)

    Google Scholar 

  2. Zhou, Y.; Huang, W.; Zhao, P.; Zhao, J.: A transformerless grid-connected photovoltaic system based on the coupled inductor single-stage boost three-phase inverter. IEEE Trans. Power Electron. 29(3), 1041–1046 (2014)

    Article  Google Scholar 

  3. Ellabban, O.; Abu-Rub, H.; Blaabjerg, F.: Renewable energy resources: current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 39, 748–764 (2014)

    Article  Google Scholar 

  4. Rashid, M.H.: Power Electronics: Devices, Circuits and Applications, 4th edn. Pearson, London (2014). (chapter 5 and chapter 16)

  5. Viswambaran, V.K.; Ghani, A.; Zhou, E.: Modeling and simulation of maximum power point tracking algorithms and review of MPPT techniques for PV applications. In: 2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA). IEEE (2016)

  6. Mishra, S.; Shukla, S.; Verma, N.: Comprehensive review on maximum power point tracking techniques: wind energy. In: Communication, Control and Intelligent Systems (CCIS), 2015. IEEE (2015)

  7. Li, Y.; Jiye, H.; Yijia, C.; Yunxuan, L.; Jiamin, X.; Denis, S.; Daniil, P.: A modular MLC type solid state transformer with internal model control method. Int. J. Electr. Power Energy Syst. 85, 153–163 (2017)

    Article  Google Scholar 

  8. Chattopadhyay, S.K.; Chakraborty, C.: A new multilevel inverter topology with self-balancing level doubling network. IEEE Trans. Ind. Electron. 61(9), 4622–4631 (2014)

    Article  Google Scholar 

  9. Hasan, M.; Mekhilef, S.; Ahmed, M.: Three-phase hybrid multilevel inverter with less power electronic components using space vector modulation. IET Power Electron. 7(5), 1256–1265 (2014)

    Article  Google Scholar 

  10. Salem, A.; Ahmed, E.M.; Orabi, M.; Abdelghani, A.B.: Novel three-phase multilevel voltage source inverter with reduced no. of switches. In: Renewable Energy Congress (IREC), 5th International (2014)

  11. Alishah, R.S.; Nazarpour, D.; Hosseini, S.H.; Sabahi, M.: Novel topologies for symmetric, asymmetric, and cascade switched-diode multilevel converter with minimum number of power electronic components. IEEE Trans. Ind. Electron. 61(10), 5300–5310 (2014)

    Article  Google Scholar 

  12. Alishah, R.S.; Nazarpour, D.; Hosseini, S.H.; Sabahi, M.: Design of new single-phase multilevel voltage source inverter. Int. J. Power Electron. Drive Syst. 5(1), 45 (2014)

    Google Scholar 

  13. Babaei, E.; Hosseini, S.H.; Gharehpetian, G.B.; Haque, M.T.; Sabahi, M.: Reduction of DC voltage sources and switches in asymmetrical multilevel converters using a novel topology. Electr. Power Syst. Res. 77(8), 1073–1085 (2007)

    Article  Google Scholar 

  14. Babaei, E.: A cascade multilevel converter topology with reduced number of switches. IEEE Trans. Power Electron. 23(6), 2657–2664 (2008)

    Article  Google Scholar 

  15. Banaei, M.R.; Salary, E.: New multilevel inverter with reduction of switches and gate driver. Energy Convers. Manag. 52(2), 1129–1136 (2011)

    Article  Google Scholar 

  16. Murugesan, G.; Sathik, M.J.; Praveen, M.: A new multilevel inverter topology using less number of switches. Int. J. Eng. Sci. Technol. 3(2) (2011)

  17. Kang, F.S.: A modified cascade transformer-based multilevel inverter and its efficient switching function. Electr. Power Syst. Res. 79(12), 1648–1654 (2009)

    Article  Google Scholar 

  18. Kang, F.S.: Modified multilevel inverter employing half-and full-bridge cells with cascade transformer and its extension to photovoltaic power generation. Electr. Power Syst. Res. 80(12), 1437–1445 (2010)

    Article  Google Scholar 

  19. Yuan, X.; Barbi, I.: Fundamentals of a new diode clamping multilevel inverter. IEEE Trans. Power Electron. 15(4), 711–718 (2000)

    Article  Google Scholar 

  20. Schweizer, M.; Kolar, J.W.: Design and implementation of a highly efficient three-level T-type converter for low-voltage applications. IEEE Trans. Power Electron. 28(2), 899–907 (2013)

    Article  Google Scholar 

  21. Schweizer, M.; Kolar, J.W.: High efficiency drive system with 3-level T-type inverter. In: Proceedings of the 2011-14th European Conference on Power Electronics and Applications (EPE 2011) (2011)

  22. Soeiro, T.B.; Kolar, J.W.: The new high-efficiency hybrid neutral-point-clamped converter. IEEE Trans. Ind. Electron. 60(5), 1919–1935 (2013)

    Article  Google Scholar 

  23. Soeiro, T.B.; Schweizer, M.; Linner, J.; Ranstad, P.; Kolar, J.W.: Comparison of 2-and 3-level active filters with enhanced bridge-leg loss distribution. In: 2011 IEEE 8th International Conference on Power Electronics and ECCE Asia (ICPE & ECCE), pp. 1835–1842 (2011)

  24. Salem, A.; Elsied, M.F.; Druant, J.; De Belie, F.; Oukaour, A.; Gualous, H.; Melkebeek, J.: An advanced multilevel converter topology with reduced switching elements. In: Industrial Electronics Society, IECON 2014-40th Annual Conference of the IEEE, pp. 1201–1207 (2014)

  25. Elsied, M.; Salem, A.; Oukaour, A.; Gualous, H.; Chaoui, H.; Youssef, F.T.; Mohammed, O.: Efficient power-electronic converters for electric vehicle applications. In: Vehicle Power and Propulsion Conference (VPPC), 2015 IEEE (2015)

  26. Vahedi, H.; Rahmani, S.; Al-Haddad, K.: Pinned mid-points multilevel inverter (PMP): three-phase topology with high voltage levels and one bidirectional switch. In: Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE, pp. 102–107 (2013)

  27. Rasilo, P.; Salem, A.; Abdallh, A.; De Belie, F.; Dupré, L.; Melkebeek, J.A.: Effect of multilevel inverter supply on core losses in magnetic materials and electrical machines. IEEE Trans. Energy Convers. 30(2), 736–744 (2015)

    Article  Google Scholar 

  28. Salem, A.; Abdallh, A.A.E.; De Belie, F.; Dupré, L.; Melkebeek, J.: A comparative study of the effect of different converter topologies on the iron loss of nonoriented electrical steel. IEEE Trans. Magn. 50(11), 1–4 (2014)

    Article  Google Scholar 

  29. Salem, A.; Abdallh, A.A.E.; De Belie, F.; Dupré, L.; Melkebeek, J.: A comparative analysis of the effect of different converter topologies on the iron loss of nonoriented electrical steel. IEEE Trans. Magn. 50, 1–4 (2014)

    Article  Google Scholar 

  30. Salem, A.; Abdallh, A.; Rasilo, P.; De Belie, F.; Ibrahim, M.N.; Dupré, L.; Melkebeek, J.: The effect of common-mode voltage elimination on the iron loss in machine core laminations of multilevel drives. IEEE Trans. Magn. 51(11), 1–4 (2015)

    Article  Google Scholar 

  31. Salem, A.; De Belie, F.; Sergeant, P.; Abdallh, A.; Melkebeek, J.: Loss evaluation of interior permanent-magnet synchronous machine drives using T-type multilevel converters. In: 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), pp. 101–106 (2015)

  32. Salem, A.; De Belie, F.; Melkebeek, J.: A novel space-vector PWM computations for a dual three-level T-type converter applied to an open end-winding induction machine. In: Power Systems Conference (MEPCON), 2016 Eighteenth International Middle East, pp. 633–638 (2016)

  33. Salem, A.; De Belie, F.; Darba, A.; Eissa, M.; Wasfy, S.M.; Melkebeek, J.: Evaluation of a dual-T-type converter supplying an open-end winding induction machine. In: Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE, pp. 749–754 (2013)

  34. Nabae, A.; Takahashi, I.; Akagi, H.: A new neutral-point-clamped PWM inverter. IEEE Trans. Ind. Appl. 5, 518–523 (1981)

    Article  Google Scholar 

  35. Hochgraf, C.; Lasseter, R.; Divan, D.; Lipo, T.A.: Comparison of multilevel inverters for static var compensation. In: Industry Applications Society Annual Meeting, 1994, Conference Record of the 1994 IEEE, vol. 2, pp. 921–928 (1994)

  36. Menzies, R.W.; Zhuang, Y.: Advanced static compensation using a multilevel GTO thyristor inverter. IEEE Trans. Power Deliv. 10(2), 732–738 (1995)

    Article  Google Scholar 

  37. Peng, F.Z.; Lai, J.S.; McKeever, J.W.; VanCoevering, J.: A multilevel voltage-source inverter with separate DC sources for static var generation. IEEE Trans. Ind. Appl. 32(5), 1130–1138 (1996)

    Article  Google Scholar 

  38. Lai, J.S.; Peng, F.Z.: Multilevel converters–a new breed of power converters. IEEE Trans. Ind. Appl. 32(3), 509–517 (1996)

    Article  Google Scholar 

  39. Peng, F.Z.; Lai, J.S.: Dynamic performance and control of a static var generator using cascade multilevel inverters. IEEE Trans. Ind. Appl. 33(3), 748–755 (1997)

    Article  Google Scholar 

  40. Peng, F.Z.; McKeever, J.W.; Adams, D.J.: Cascade multilevel inverters for utility applications. In: 23rd International Conference on Industrial Electronics, Control and Instrumentation. IECON 97, vol. 2, pp. 437–442 (1997)

  41. Joos, G.; Huang, X.; Ooi, B.T.: Direct-coupled multilevel cascaded series VAR compensators. IEEE Trans. Ind. Appl. 34(5), 1156–1163 (1998)

    Article  Google Scholar 

  42. Peng, F.Z.; McKeever, J.W.; Adams, D.J.: A power line conditioner using cascade multilevel inverters for distribution systems. IEEE Trans. Ind. Appl. 34(6), 1293–1298 (1998)

    Article  Google Scholar 

  43. Tolbert, L.M.; Peng, F.Z.; Habetler, T.G.: Multilevel inverters for electric vehicle applications. Power Electron. Transp. 1998, 79–84 (1998)

    Google Scholar 

  44. Manjrekar, M.D.; Lipo, T.A.: A hybrid multilevel inverter topology for drive applications. In: Applied Power Electronics Conference and Exposition, 1998. APEC’98. Conference Proceedings 1998, Thirteenth Annual, vol. 2, pp. 523–529 (1998)

  45. Manjrekar, M.D.; Lipo, T.A.: A generalized structure of multilevel power converter. In: 1998 International Conference on Power Electronic Drives and Energy Systems for Industrial Growth, 1998. Proceedings, vol. 1, pp. 62–67 (1998)

  46. Tolbert, L.M.; Peng, F.Z.; Habetler, T.G.: A multilevel converter-based universal power conditioner. IEEE Trans. Ind. Appl. 36(2), 596–603 (2000)

    Article  Google Scholar 

  47. Tolbert, L.A.; Peng, F.Z.; Cunnyngham, T.; Chiasson, J.N.: Charge balance control schemes for cascade multilevel converter in hybrid electric vehicles. IEEE Trans. Ind. Electron. 49(5), 1058–1064 (2002)

    Article  Google Scholar 

  48. Corzine, K.; Familiant, Y.: A new cascaded multilevel H-bridge drive. IEEE Trans. Power Electron. 17(1), 125–131 (2002)

    Article  Google Scholar 

  49. Luiz, A.S.A.; de Jesus Cardoso Filho, B.: A new design of selective harmonic elimination for adjustable speed operation of AC motors in mining industry. In: Applied Power Electronics Conference and Exposition (APEC), 2017 IEEE, pp. 607–614 (2017)

  50. Rahul, S.: A comparative analysis of speed control methods for induction motor FED by Neutral point clamped inverter. Dissertation Indian Institute of Technology Gandhinagar (2016)

  51. Benaouda, O.F.; Bendiabdellah, A.; Cherif, B.D.E.: Contribution to reconfigured multi-level inverter fed double stator induction machine DTC-SVM control. Int. Rev. Model. Simul. 9(5), 317–328 (2016)

    Google Scholar 

  52. Sadhwani, R.; Ragavan, K.: A comparative study of speed control methods for induction motor fed by three level inverter. In: IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES) (2016)

  53. Zhang, Y.; Bai, Y.: Model predictive flux control of three-level inverter-fed induction motor drives based on space vector modulation. In: Future Energy Electronics Conference and ECCE Asia, 2017 IEEE 3rd International, pp. 986–991 (2017)

  54. Zhang, Z.; Tian, W.; Xiong, W.; Kennel, R.: Predictive torque control of induction machines fed by 3L-NPC converters with online weighting factor adjustment using Fuzzy Logic. In: Transportation Electrification Conference and Expo (ITEC), 2017 IEEE, pp. 84–89 (2017)

  55. Wang, X.; Zhou, Y.; Yang, D.; Shi, X.: Direct torque control of three-level inverter-Fed PMSM based on zero voltage vector distribution for torque ripple reduction. In: Control and Decision Conference (CCDC), 2017 29th Chinese, pp. 7776–7781 (2017)

  56. Davletzhanova, Z.; Alatise, O.; Gonzalez, J.O.; Konaklieva, S.; Bonyadi, R.: Electrothermal stresses in SiC MOSFET and Si IGBT 3L-NPC converters for motor drive applications. In: PCIM Europe 2017; Proceedings of VDE (2017)

  57. Bharatiraja, C.; Jeevananthan, S.; Munda, J.L.: A timing correction algorithm based extended SVM for three level neutral point clamped MLI in over modulation zone. IEEE J. Emerg. Sel. Top. Power Electron. 6, 233–245 (2017)

  58. Ariff, E.E.; Dordevic, O.; Jones, M.: A space vector PWM technique for a three level symmetrical six phase drive. IEEE Trans. Ind. Electron. 64, 8396–8405 (2017)

    Article  Google Scholar 

  59. Ismail, H.; Jidin, A.; Patkar, F.; Tarusan, S.A.; Razi, A.; Rahim, M.K.: Constant switching frequency torque controller for DTC of induction motor drives with three-level NPC inverter. In: 2016 IEEE International Conference on Power and Energy (PECon), pp. 210–215 (2016)

  60. Le, Q.A.; Park, D.H.; Lee, D.C.: Common-mode voltage elimination with an auxiliary half-bridge circuit for five-level active NPC inverters. J. Power Electron. 17(4), 923–932 (2017)

    Google Scholar 

  61. Dey, P.; Datta, M.; Fernando, N.: A coordinated control of grid connected PMSG based wind energy conversion system under grid faults. In: Future Energy Electronics Conference and ECCE Asia (IFEEC 2017-ECCE Asia), 2017 IEEE 3rd International, pp. 597–602 (2017)

  62. Choi, W.; Wu, Y.; Han, D.; Gorman, J.; Palavicino, P.C.; Lee, W.; Sarlioglu, B.: Reviews on grid-connected inverter, utility-scaled battery energy storage system, and vehicle-to-grid application-challenges and opportunities. In: Transportation Electrification Conference and Expo (ITEC), 2017 IEEE, pp. 203–210 (2017)

  63. Aggarwal, S.; Nijhawan, P.G.: Role of DC-MLI based D-STATCOM in distribution network with FOC induction motor drive (Doctoral dissertation) (2017)

  64. Marija, J.: High power modular converters for grid interface applications. Dissertation, University of Nottingham (2017)

  65. Ibáñez, M.: New topology for STATCOM (2017). ISSN 1653–5146

  66. Lai, X.; Pei, Y.; Li, N.: Direct power control strategy of three-level SVG used in power system. In: Power and Energy Engineering Conference (APPEEC), 2016 IEEE PES Asia-Pacific, pp. 2443–2447 (2016)

  67. Moghbel, M.; Masoum, M.A.; Deilami, S.: Optimal placement and sizing of multiple STATCOM in distribution system to improve voltage profile. In: Power Engineering Conference (AUPEC), 2016 Australasian Universities, pp. 1–5 (2016)

  68. Schweizer, M.; Lizama, I.; Friedli, T.; Kolar, J.W.: Comparison of the chip area usage of 2-level and 3-level voltage source converter topologies. In: IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, pp. 391–396 (2010)

  69. Schweizer, M.; Friedli, T.; Kolar, J.W.: Comparative evaluation of advanced three-phase three-level inverter/converter topologies against two-level systems. IEEE Trans. Ind. Electron. 60(12), 5515–5527 (2013)

    Article  Google Scholar 

  70. Stempfle, M.; Fischer, M.; Nitzsche, M.; Wölfle, J.; Roth-Stielow, J.: Efficiency analysis of three-level NPC and T-type voltage source inverter for various operation modes optimizing the overall drive train efficiency by an operating mode selection. In: 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), pp. 1–10 (2016)

  71. Brueske, S.; Robin K.; Friedrich, Fuchs W.: Comparison of topologies for the main inverter of an electric vehicle. In: PCIM Europe (2014)

  72. Fuji Electric Innovation Energy Technology: Three-level modules with authentic RB-IGBT. Application Note No. MT5F30875 (2015)

  73. Avci, E.; Uçar, M.: Analysis and design of grid-connected 3-phase 3-level AT-NPC inverter for low-voltage applications. Turk. J. Electr. Eng. Comput. Sci. 25(3), 2464–2478 (2017)

    Article  Google Scholar 

  74. Lee, K.; Shin, H.; Choi, J.: Comparative analysis of power losses for 3-Level NPC and T-type inverter modules. In: INTELEC, 2015 IEEE International (2015)

  75. Wang, Y.; Shi, W.W.; Xie, N.; Wang, C.M.: Diode-free T-type three-level neutral-point-clamped inverter for low-voltage renewable energy system. IEEE Trans. Ind. Electron. 61(11), 6168–6174 (2014)

    Article  Google Scholar 

  76. Krishna, K.C.; Viswanathan, M.: Diode free T-type five level neutral point clamped inverter for low voltage DC system. IEEE Trans. Ind. Electron. 61, 6168–6174 (2014)

    Article  Google Scholar 

  77. Shin, S.; Jung, A.; Byoung, L.: Maximum efficiency operation of three-level T-type inverter for low-voltage and low-power home appliances. J. Electr. Eng. Technol. 10(2), 586–594 (2015)

    Article  Google Scholar 

  78. Salem, A.: Design and analysis of five-level T-type power converters for rotating field drives. Doctoral dissertation, Ghent University (2015)

  79. Bose, B.K.: Chapter 5 voltage fed converter. In: Bose, B.K. (ed.) Modern Power Electronics and AC drives, pp. 224–236. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  80. Xing, X.; Chen, A.; Zhang, Z.; Chen, J.; Zhang, C.: Model predictive control method to reduce common-mode voltage and balance the neutral-point voltage in three-level T-type inverter. In: Applied Power Electronics Conference and Exposition (APEC), 2016 IEEE, pp. 3453–3458 (2016)

  81. Aly, M.; Shoyama, M.: An efficient neutral point voltage control algorithm with reduced switching losses for three level inverters. 2014 IEEE International Conference on PECon (2014)

  82. Zhang, T.; Du, C.; Qin, C.; Xing, X.; Chen, A.; Zhang, C.: Neutral-point voltage balancing control for three-level T-type inverter using SHEPWM. In: IPEMC-ECCE Asia, 2016 IEEE 8th International, pp. 1116–1122 (2016)

  83. Ding, R.; Mei, J.; Zhao, J.; Zhao, Z.; Tian, J.: A simplified balance factor based midpoint voltage deviation eliminating method for T-type three-level inverter. In: 2016 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), pp. 328–333 (2016)

  84. Salem, A.; Belie, F.D.; Yousef, T.; Melkebeek, J.; Mohamed, O.A.; Abido, M.A.: Advanced multilevel converter applied to an open-ends induction machine: analysis, implementation and loss evaluation. In: Electric Machines and Drives Conference (IEMDC), 2017 IEEE International, pp. 1–8 (2017)

  85. Pires, V.F.; Foito, D.; Sousa, D.M.: Conversion structure based on a dual T-type three-level inverter for grid connected photovoltaic applications. In: IEEE 5th International Symposium on PEDG (2014)

  86. Shi, Y.; Shi, Y.; Wang, L.; Xie, R.; Li, H.: A 50 kW high power density paralleled-five-level PV converter based on SiC T-type MOSFET modules. In: Energy Conversion Congress and Exposition (ECCE), pp. 1–8 (2016)

  87. de Almeida, C.; Torricopé, R.; Neto, J.; Torrico, G.: Five-level T-type inverter based on multistate switching cell. IEEE Trans. Ind. Appl. 50(6), 3857–3866 (2014)

    Article  Google Scholar 

  88. Cacau, R.G.; Bascopé, R.P.; Neto, J.A.; Bascopé, G.V.: Five-level T-type inverter based on multi-state switching cell. In: 2012 10th IEEE/IAS International Conference on Industry Applications (INDUSCON), pp. 1–8 (2012)

  89. Pires, V.F.; Foito, D.; Martins, J.F.: Multilevel power converter with a dual T-type three level inverter for energy storage. In: 2014 International Conference on OPTIM (2014)

  90. Bhattacharya, S.; Mascarella, D.; Joós, G.; Cyr, J.M.; Xu, J.: A dual three-level T-NPC inverter for high-power traction applications. IEEE J. Emerg. Sel. Top. Power Electron. 4(2), 668–678 (2016)

  91. Sato, D.; Itoh, J.: Total loss comparison of inverter circuit topologies with interior permanent magnet synchronous motor drive system. In: ECCE Asia, 2013 IEEE (2013)

  92. Liang, D.; Li, J.; Qu, R.; Zheng, P.; Song, B.: Evaluation of high-speed permanent magnet synchronous machine drive with three-level and two-level inverter. In: Electric Machines and Drives Conference (IEMDC), 2015 IEEE International, pp. 1586–1592 (2015)

  93. Gao, C.; Jiang, X.; Li, Y.; Chen, Z.; Liu, J.: A DC-link voltage self-balance method for a diode-clamped modular multilevel converter with minimum number of voltage sensors. IEEE Trans. Power Electron. 28(5), 2125–2139 (2013)

    Article  Google Scholar 

  94. Pou, J.; Pindado, R.; Boroyevich, D.: Voltage-balance limits in four level diode-clamped converter switch passive front ends. IEEE Trans. Ind. Electron. 52(1), 190–196 (2005)

    Article  Google Scholar 

  95. Kanchan, R.; Tekwani, P.; Gopakumar, K.: Three-level inverter scheme with common mode voltage elimination and dc-link capacitor voltage balancing for an open end winding induction motor drive. In: 2005 IEEE International Conference on Electric Machines and Drives, pp. 1445–1452 (2005)

  96. Wang, K.; Zheng, Z.; Xu, L.; Li, Y.: A four-level hybrid-clamped converter with natural capacitor voltage balancing ability. IEEE Trans. Power Electron. 29(3), 1152–1162 (2014)

    Article  Google Scholar 

  97. Ghias, A.M.; Pou, J.; Ciobotaru, M.; Agelidis, V.G.: Voltage balancing method using phase-shifted PWM for the flying capacitor multilevel converter. IEEE Trans. Power Electron. 29(9), 4521–4531 (2014)

    Article  Google Scholar 

  98. Amini, J.: An effortless space-vector-based modulation for n-level flying capacitor multilevel inverter with capacitor voltage balancing capability. IEEE Trans. Power Electron. 29(11), 6188–6195 (2014)

    Article  Google Scholar 

  99. Saeedifard, M.; Iravani, R.; Pou, J.: Analysis and control of DC capacitor voltage-drift phenomenon of a passive front-end five-level converter. IEEE Trans. Ind. Electron. 54(6), 3255–3266 (2007)

    Article  Google Scholar 

  100. Salem, A.; De Belie, F.; Youssef, T.; Melkebeek, J.; Mohamed, O.A.; Abido, M.A.: DC link capacitor voltage balancing of a dual three-level T-type AC drive using switching state redundancy. In: Electric Machines and Drives Conference (IEMDC), 2017 IEEE International, pp. 1–8 (2017)

  101. Beye, M.; Elsied, M.; Mabwe, A.M.; Onambele, C.: Grid interconnection of renewable energy sources based on advanced multi-level inverter. In: 2017 IEEE International Conference on EEEIC/I&CPS Europe, pp. 1–6 (2017)

  102. Barbosa, P.; Steimer, P.; Meysenc, L.; Winkelnkemper, M.; Steinke, J.; Celanovic, N.: Active neutral-point-clamped multilevel converters. In: PESC’05. IEEE 36th, pp. 2296–2301 (2005)

  103. Korhonen, J.; Sankala, A.; Ström, J.P.; Silventoinen, P.: Hybrid five-level T-type inverter. In: Industrial Electronics Society, IECON 2014-40th Annual Conference of the IEEE, pp. 1506–1511 (2014)

  104. Alnamer, S.S.; Mekhilef, S.; Mokhlis, H.: Proposed new N-multilevel family of topologies for T-type inverter. IEICE Electron. Exp. 14(15), 20170342–20170342 (2017)

    Article  Google Scholar 

  105. Ingo, S.: 3L NPC & TNPC topology. Semikron Application Note No. AN11001 (2015)

  106. Fair-Child Application Note: Renewable energy solutions: energy efficient components for PV solar systems. http://pdf.directindustry.com/pdf/fairchildsemiconductor/renewable-energy-solutions/33535-259003-_13.html

  107. Honsberg, M.; Goto, A.; Motto, E.R.: A new 3 level 4in1 T-type IGBT module with low internal inductance and optimized 6.1st/7th generation 1200 V/650 V chipset for UPS and PV inverter application. In: 2015 17th European Conference on EPE’15 ECCE-Europe (2015)

  108. Cree Application Note: Design Considerations for Designing with Cree SiC Modules Part 1. Understanding the Effects of Parasitic Inductance. Cree Inc, Durham (2013)

    Google Scholar 

  109. Cree Application Note: Design Considerations for Designing with Cree SiC Modules Part 2 Techniques for Minimizing Parasitic Inductance. Cree Inc, Durham (2013)

    Google Scholar 

  110. Cree Application Note: Application Considerations for Silicon Carbide MOSFETs. Cree Inc, Durham (2013)

    Google Scholar 

  111. Anthon, A.; Hernandez, J.C.; Zhang, Z.; Andersen, M.A.: Switching investigations on a SiC MOSFET in a TO-247 package. In: Industrial Electronics Society, IECON 2014-40th Annual Conference of the IEEE, pp. 1854–1860 (2014)

  112. Anthon, A.; Zhang, Z.; Andersen, M.A.; Holmes, D.G.; McGrath, B.; Teixeira, C.A.: The benefits of SiC mosfet s in a T-type inverter for grid-tie applications. IEEE Trans. Power Electron. 32(4), 2808–2821 (2017)

    Article  Google Scholar 

  113. Gurpinar, E.; Castellazzi, A.: Single-phase T-type inverter performance benchmark using Si IGBTs, SiC MOSFETs, and GaN HEMTs. IEEE Trans. Power Electron. 31(10), 7148–7160 (2016)

    Google Scholar 

  114. Gu, M.; Xu, P.; Zhang, L.; Sun, K.: A SiC-based T-type three-phase three-level grid tied inverter. In: 2015 IEEE 10th Conference on ICIEA, pp. 1116–1121 (2015)

  115. Rabkowski, J.; Sak, T.; Strzelecki, R.; Grabarek, M.: SiC-based T-type modules for multi-pulse inverter with coupled inductors. In: 2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), pp. 568–572 (2017)

  116. Nguyen, T.D.; Dzung, P.Q.; Dat, D.N.; Nhan, N.H.: The carrier-based PWM method to reduce common-mode voltage for three-level T-type neutral point clamp inverter. In: 2014 IEEE 9th Conference on ICIEA, pp. 1549–1554 (2014)

  117. Nguyen, T.D.; Phan, D.Q.; Dao, D.N.; Lee, H.H.: Carrier phase-shift PWM to reduce common-mode voltage for three-level T-type NPC inverters. J. Power Electron. 14(6), 1197–1207 (2014)

    Article  Google Scholar 

  118. Ellabban, O.; Abu-Rub, H.: Z-source inverter: topology improvements review. IEEE Ind. Electron. Mag. 10(1), 6–24 (2016)

    Article  Google Scholar 

  119. Ellabban, O.; Van Mierlo, J.; Lataire, P.; Van den Bossche, P.: Z-source inverter for vehicular applications. In: Vehicle Power and Propulsion Conference (VPPC), 2011 IEEE, pp. 1–6 (2011)

  120. Ellabban, O.; Mosa, M.; Abu-Rub, H.; Rodriguez, J.: Model predictive control of a grid connected quasi-Z-source inverter. In: 2013 IEEE International Conference on Industrial Technology (ICIT), pp. 1591–1596 (2013)

  121. Bayhan, S.; Trabelsi, M.; Ellabban, O.; Abu-Rub, H., Balog, R.S.: A five-level neutral-point-clamped/H-bridge quasi-impedance source inverter for grid connected PV system. In: Industrial Electronics Society, IECON 2016-42nd Annual Conference of the IEEE, pp. 2502–2507 (2016)

  122. Pires, V.F.; Cordeiro, A.; Foito, D.; Martins, J.F.: Quasi-Zsource inverter with a T-type converter in normal and failure mode. IEEE Trans Power Electron 31(11), 7462–7470 (2016)

    Article  Google Scholar 

  123. Pires, V.F.; Foito, D.; Cordeiro, A.; Martins, J.F.: Three-phase T-type qZ source inverter with control current associated to a vectorial modulator for photovoltaic applications. In: 2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), pp. 656–661 (2017)

  124. Ozdemir, S.: Z-source T-type inverter for renewable energy systems with proportional resonant controller. Int. J. Hydrog. Energy 41(29), 12591–12602 (2016)

    Article  Google Scholar 

  125. Xing, X.; Zhang, C.; Chen, A.; He, J.; Wang, W.; Du, C.: Space-vector-modulated method for boosting and neutral voltage balancing in Z-source three-level T-type inverter. IEEE Trans. Ind. Appl. 52(2), 1621–1631 (2016)

    Google Scholar 

  126. Solar debt financing on pace to reach highest since: the Bloomberg New Energy Finance (BNEF), 2014. http://www.bnef.org (2010)

  127. Guo, X.; Cavalcanti, M.C.; Farias, A.M.; Guerrero, J.M.: Single carrier modulation for neutral-point-clamped inverters in three-phase transformer-less photovoltaic systems. IEEE Trans. Power Electron. 28(6), 2635–2637 (2013)

    Article  Google Scholar 

  128. Zhou, Y.; Huang, W.; Zhao, P.; Zhao, J.: A transformer-less grid connected PV system based on the coupled inductor single-stage boost three-phase inverter. IEEE Trans. Power Electron. 29(3), 1041–1046 (2014)

    Article  Google Scholar 

  129. Koutroulis, E.; Blaabjerg, F.: Design optimization of transformer-less grid-connected PV inverters including reliability. IEEE Trans. Power Electron. 28(1), 325–335 (2013)

    Article  Google Scholar 

  130. Shao, Z.; Xing, Z.; Fusheng, W.; Renxian, C.; Hua, N.: Analysis and control of neutral-point voltage for transformerless three-level PV inverter in LVRT operation. IEEE Trans. Power Electron. 32(3), 2347–2359 (2017)

    Article  Google Scholar 

  131. Zorig, A.; Belkheiri, M.; Barkat, S.: Control of three-level T-type inverter based grid connected PV system. In: 2016 13th International Multi-conference on Systems, Signals and Devices (SSD), pp. 66–71 (2016)

  132. Kuo, C.-C.; Tzou, Y.-Y.: FPGA control of a single-phase T-type NPC grid inverter for low THD and robust performance. In: Future Energy Electronics Conference and ECCE Asia (IFEEC 2017-ECCE Asia) (2017)

  133. Wang, M.; Chen, Q.; Li, G.; Hu, C.; Cheng, L.; Zhou, R.: LCL filter design in T-type three-level grid-connected inverter. In: 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), pp. 2236–2240 (2016)

  134. Xia, Y.; Roy, J.; Ayyanar, R.: A high performance T-type single-phase double grounded transformer-less photovoltaic inverter with active power decoupling. In: Energy Conversion Congress and Exposition (ECCE), pp. 1–7 (2016)

  135. Abdel-Rahim, O.; Takeuchi, M.; Funato, H.; Junnosuke, H.: T-type three-level neutral point clamped inverter with model predictive control for grid connected photovoltaic applications. In: 2016 19th International Conference on Electrical Machines and Systems (ICEMS), pp. 1–5 (2016)

  136. Zhang, Z.; Jiang, M.; Yao, Y.; Kang, L.: Transformerless three-phase T-type three-level inverter for medium-power photovoltaic systems. In: Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), 2016 IEEE 8th International, pp. 1592–1595 (2016)

  137. Choi, U.M.; Blaabjerg, F.; Lee, K.B.: Independent control strategy of two DC-link voltages for separate MPPTs in transformerless photovoltaic systems using neutral-point-clamped inverters. In: Applied Power Electronics Conference and Exposition (APEC), 2014 Twenty-Ninth Annual IEEE, pp. 1718–1724 (2014)

  138. Park, Y.; Sul, S.K.; Lim, C.H.; Kim, W.C.; Lee, S.H.: Asymmetric control of DC-link voltages for separate MPPTs in three-level inverters. IEEE Trans. Power Electron. 28(6), 2760–2769 (2013)

    Article  Google Scholar 

  139. Choi, U.M.; Blaabjerg, F.; Lee, K.B.: Control strategy of two capacitor voltages for separate MPPTs in photovoltaic systems using neutral-point-clamped inverters. IEEE Trans. Ind. Appl. 51(4), 3295–3303 (2015)

    Article  Google Scholar 

  140. Choi, U.M.; Jeong, H.G.; Lee, K.B.; Blaabjerg, F.: Method for detecting an open-switch fault in a grid-connected NPC inverter system. IEEE Trans. Power Electron. 27(6), 2726–2739 (2012)

    Article  Google Scholar 

  141. Kim, T.J.; Lee, W.C.; Hyun, D.S.: Detection method for open circuit fault in neutral-point clamped inverter systems. IEEE Trans. Ind. Electron. 56(7), 2754–2763 (2009)

    Article  Google Scholar 

  142. Khomfoi, S.; Tolbert, L.M.: Fault diagnostic system for a multilevel inverter using a neural network. IEEE Trans. Power Electron. 22(3), 1062–1069 (2007)

    Article  Google Scholar 

  143. Choi, U.M.; Lee, K.B.; Blaabjerg, F.: Diagnosis method of an open-switch fault for a grid-connected T-type three-level inverter system. In: 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 470–475 (2012)

  144. Choi, U.M.; Lee, K.B.: Detection method of an open-switch fault and fault-tolerant strategy for a grid-connected T-type three-level inverter system. In: Conference on ECCE 2012, pp. 4188–4195 (2012)

  145. Lu, B.; Sharma, S.: A literature review of IGBT fault diagnostic and protection methods for power inverters. In: Industry Applications Society Annual Meeting, 2008. IAS’08. IEEE, pp. 1–8 (2008)

  146. Ko, Y.J.; Lee, K.B.: Fault diagnosis of a voltage-fed PWM inverter for a three-parallel power conversion system in a wind turbine. J. Power Electron. 10(6), 686–693 (2010)

    Article  Google Scholar 

  147. Lezana, P.; Pou, J.; Meynard, T.A.; Rodriguez, J.; Ceballos, S.; Richardeau, F.: Survey on fault operation on multilevel inverters. IEEE Trans. Ind. Electron. 57(7), 2207–2218 (2010)

    Article  Google Scholar 

  148. Ko, Y.J.; Lee, K.B.; Lee, D.C.; Kim, J.M.: Fault diagnosis of three-parallel voltage-source converter for a high-power wind turbine. IET Power Electron. 5(7), 1058–1067 (2012)

    Article  Google Scholar 

  149. Pires, V.F.; Foito, D.; Amaral, T.G.: Fault detection and diagnosis in a PV grid-connected T-type three level inverter. In: 2015 International Conference on Renewable Energy Research and Applications (ICRERA), pp. 933–937 (2015)

  150. Choi, U.M.; Blaabjerg, F.: A novel active T-type three-level converter with open-circuit fault-tolerant control. In: Energy Conversion Congress and Exposition (ECCE), 2015 IEEE, pp. 4765–4772 (2015)

  151. Choi, U.M.; Lee, K.B.; Blaabjerg, F.: Diagnosis and tolerant strategy of an open-switch fault for T-type three-level inverter systems. IEEE Trans. Ind. Appl. 50(1), 495–508 (2014)

    Article  Google Scholar 

  152. Choi, U.-M.; Lee, K.-B.: Detection method of an open-switch fault and fault-tolerant strategy for a grid-connected T-type three-level inverter system. In: Energy Conversion Congress and Exposition (ECCE) (2012)

  153. Chen, J.; Chen, A.; Xing, X.; Zhang, C.: Fault-tolerant control strategy for T-type three-level inverter with neutral-point voltage balancing. In: Applied Power Electronics Conference and Exposition (APEC), 2017 IEEE, pp. 3420–3425 (2017)

  154. Nemade, R.V.; Pandit, J.K.; Aware, M.V.: Reconfiguration of T-type inverter for direct torque controlled induction motor drives under open-switch faults. IEEE Trans. Ind. Appl. 53(3), 2936–2947 (2017)

    Article  Google Scholar 

  155. Lee, J.-S.; Lee, K.-B.: An open-switch fault detection method and tolerance controls based on SVM in a grid-connected T-type rectifier with unity power factor. IEEE Trans. Ind. Electron. 61(12), 7092–7104 (2014)

    Article  Google Scholar 

  156. Lee, J.S.; Lee, K.B.: Open-switch fault tolerance control for a three-level NPC/T-type rectifier in wind turbine systems. IEEE Trans. Ind. Electron. 62(2), 1012–1021 (2015)

    Article  Google Scholar 

  157. June-Seok, L.; Choi, U.-M.; Lee, K.-B.: Comparison of tolerance controls for open-switch fault in a grid-connected T-type rectifier. IEEE Trans. Power Electron. 30(10), 5810–5820 (2015)

    Article  Google Scholar 

  158. Lee, J.S.; Lee, K.B.: Tolerance controls for open-switch fault in a grid-connected T-type rectifier at low modulation index. In: Applied Power Electronics Conference and Exposition (APEC), 2014 Twenty-Ninth Annual IEEE, pp. 1846–1851 (2014)

  159. Xu, S.; Zhang, J.; Hang, J.: Investigation of a fault-tolerant three-level T-type inverter system. IEEE Trans. Ind. Appl. 53, 4613–4623 (2017)

    Article  Google Scholar 

  160. Zhang, W.; Liu, G.; Xu, D.; Hawke, J.; Garg, P.; Enjeti, P.: A fault-tolerant T-type three-level inverter system. In: Applied Power Electronics Conference and Exposition (APEC), 2014 Twenty-Ninth Annual IEEE, pp. 274–280 (2014)

  161. He, J.; Weise, N.; Wei, L.; Demerdash, N.A.: A fault-tolerant topology of T-type NPC inverter with increased thermal overload capability. In: Applied Power Electronics Conference and Exposition (APEC), 2016 IEEE, pp. 1065–1070 (2016)

  162. He, J.; Katebi, R.; Weise, N.; Demerdash, N.A.; Wei, L.: A fault-tolerant T-type multilevel inverter topology with increased overload capability and soft-switching characteristics. IEEE Trans. Ind. Appl. 53(3), 2826–2839 (2017)

    Article  Google Scholar 

  163. Advanced NPC 3-level inverter modules applications notes by Fuji, May 2016. https://www.fujielectric.com/products/semiconductor/model/igbt/technical/3level.html

Download references

Acknowledgements

The authors would like to acknowledge the support provided by the Center of Energy and Geo-Processing (CeGP), King Fahd University of Petroleum and Minerals, through the funded Project No. GTEC1701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Abido.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem, A., Abido, M.A. T-Type Multilevel Converter Topologies: A Comprehensive Review. Arab J Sci Eng 44, 1713–1735 (2019). https://doi.org/10.1007/s13369-018-3506-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3506-6

Keywords

Navigation