Skip to main content
Log in

MoTUO: An Approach for Optimizing Usability Within Model Transformations

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Model transformation stands for an important issue to manipulate models in the model-driven engineering approach. Indeed, it consists of a set of transformation rules describing how a construct from a source model can be transformed to one or several ways in the target model. Though alternative target models may be equivalent from the functional perspective, they may differ from the non-functional perspective. Besides, they do not satisfy the same usability aspects. One of the main challenges of the transformation process is identifying the alternative transformation that generates a highly usable target model according to a set of desired usability attributes. Our research work addresses this issue by combining the power of model transformations engine and search techniques. Specifically, the proposed approach defines model transformation as a usability optimization problem. It allows the search of the optimal alternative transformation from a large search space taking into account an agreed usability model and using a metaheuristic search algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abran, A.; Khelifi, A.; Suryn, W.; Seffah, A.: Usability meanings and interpretations in ISO standards. Softw. Qual. J. 11(4), 325–338 (2003)

    Article  Google Scholar 

  2. Seffah, A.; Donyaee, M.; Kline, R.B.; Padda, H.K.: Usability measurement and metrics: a consolidated model. Softw. Qual. J. 14(2), 159–178 (2006)

    Article  Google Scholar 

  3. Charfi, S.; Ezzedine, H.; Kolski, C.: Rita: a user interface evaluation framework. J. Univ. Comput. Sci. 21(4), 526–560 (2015)

    Google Scholar 

  4. Assila, A.; Marçal de Oliveira, K.; Ezzedine, H.: Integration of subjective and objective usability evaluation based on IEC/IEC 15939: a case study for traffic supervision systems. Int. J. Hum. Comput. Interact. 32(12), 931–955 (2016)

    Article  Google Scholar 

  5. Fernandez, A.; AbrahãO, S.; Insfran, E.: Empirical validation of a usability inspection method for model-driven web development. J. Syst. Softw. 86(1), 161–186 (2013)

    Article  Google Scholar 

  6. Brambilla, M.; Cabot, J.; Wimmer, M.: Model-driven software engineering in practice. Synth. Lect. Softw. Eng. 3(1), 1–207 (2017)

    Article  Google Scholar 

  7. Ammar, L.B.; Trabelsi, A.; Mahfoudhi, A.: Incorporating usability requirements into model transformation technologies. Requir. Eng. 20(4), 465–479 (2015)

    Article  Google Scholar 

  8. Panach, J.I.; Aquino, N.; Pastor, Ó.: A proposal for modelling usability in a holistic mdd method. Sci. Comput. Program. 86, 74–88 (2014)

    Article  Google Scholar 

  9. Faunes, M.; Sahraoui, H.; Boukadoum, M.: Genetic-programming approach to learn model transformation rules from examples. In: International Conference on Theory and Practice of Model Transformations, pp. 17–32. Springer, Berlin (2013)

  10. Kessentini, M.; Sahraoui, H.; Boukadoum, M.: Model transformation as an optimization problem. In: International Conference on Model Driven Engineering Languages and Systems, pp. 159–173. Springer, Berlin (2008)

  11. Harman, M.; Jones, B.F.: Search-based software engineering. Inf. Softw. Technol. 43(14), 833–839 (2001)

    Article  Google Scholar 

  12. Hentati, M.; Ammar, L.B.; Trabelsi, A.; Mahfoudhi, A.: Model-driven engineering for optimizing the usability of user interfaces. In: ICEIS 2016-Proceedings of the 18th International Conference on Enterprise Information Systems, vol. 2, Rome, Italy, April 25–28, 2016, pp. 459–466 (2016)

  13. Abrahão, S.; Iborra, E.; Vanderdonckt, J.: Usability evaluation of user interfaces generated with a model-driven architecture tool. In: Law, E.L.C., Hvannberg, E.T., Cockton, G. (eds.) Maturing Usability, pp. 3–32. Springer, Berlin (2008)

    Chapter  Google Scholar 

  14. Panach, J.I.; Juristo, N.; Pastor, O.: Including functional usability features in a model-driven development method. Comput. Sci. Inf. Syst. 10(3), 999–1024 (2013)

    Article  Google Scholar 

  15. Ammar, L.B.; Trabelsi, A.; Mahfoudhi, A.: A model-driven approach for usability engineering of interactive systems. Softw. Qual. J. 24(2), 301–335 (2016)

    Article  Google Scholar 

  16. Fleck, M.; Troya, J.; Wimmer, M.: Search-based model transformations with MOMoT. In: International Conference on Theory and Practice of Model Transformations, pp. 79–87. Springer, Berlin (2016)

  17. Gajos, K.Z.; Weld, D.S.; Wobbrock, J.O.: Automatically generating personalized user interfaces with supple. Artif. Intell. 174(12), 910–950 (2010)

    Article  Google Scholar 

  18. Mkaouer, M.W.; Kessentini, M.; Cinnéide, M.Ó.; Hayashi, S.; Deb, K.: A robust multi-objective approach to balance severity and importance of refactoring opportunities. Empir. Softw. Eng. 22(2), 894–927 (2017)

    Article  Google Scholar 

  19. Raneburger, D.; Popp, R.; Kavaldjian, S.; Kaindl, H.; Falb, J.: Optimized gui generation for small screens. In: Hussmann, H., Meixner, G., Zuehlke, D. (eds.) Model-Driven Development of Advanced User Interfaces, pp. 107–122. Springer, Berlin (2011)

    Chapter  Google Scholar 

  20. Mkaouer, M.W.; Kessentini, M.; Bechikh, S.; Cinnéide, M.Ó.; Deb, K.: On the use of many quality attributes for software refactoring: a many-objective search-based software engineering approach. Empir. Softw. Eng. 21(6), 2503–2545 (2016)

    Article  Google Scholar 

  21. Ouni, A.; Kessentini, M.; Sahraoui, H.; Boukadoum, M.: Maintainability defects detection and correction: a multi-objective approach. Autom. Softw. Eng. 19, 1–33 (2013)

    Google Scholar 

  22. Boussaïd, I.; Siarry, P.; Ahmed-Nacer, M.: A survey on search-based model-driven engineering. Autom. Softw. Eng. 24(2), 233–294 (2017)

    Article  Google Scholar 

  23. Fleck, M.; Troya, J.; Kessentini, M.; Wimmer, M.; Alkhazi, B.: Model transformation modularization as a many-objective optimization problem. IEEE Trans. Softw. Eng. 43, 1009–1032 (2017)

    Article  Google Scholar 

  24. Fleck, M.; Troya, J.; Wimmer, M.: Search-based model transformations. J. Softw. Evolut. Process 28(12), 1081–1117 (2016)

    Article  Google Scholar 

  25. da Silva, A.R.: Model-driven engineering: a survey supported by the unified conceptual model. Comput. Lang. Syst. Struct. 43, 139–155 (2015)

    Google Scholar 

  26. Lúcio, L.; Amrani, M.; Dingel, J.; Lambers, L.; Salay, R.; Selim, G.M.; Syriani, E.; Wimmer, M.: Model transformation intents and their properties. Softw. Syst. Model. 15(3), 647–684 (2016)

    Article  Google Scholar 

  27. Hussmann, H.; Meixner, G.; Zuehlke, D.: Model-Driven Development of Advanced User Interfaces, vol. 340. Springer, Berlin (2011)

    Book  Google Scholar 

  28. Calvary, G.; Coutaz, J.; Thevenin, D.; Limbourg, Q.; Bouillon, L.; Vanderdonckt, J.: A unifying reference framework for multi-target user interfaces. Interact. Comput. 15(3), 299–308 (2003)

    Article  Google Scholar 

  29. Chang, E.; Dillon, T.S.: A usability-evaluation metric based on a soft-computing approach. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 36(2), 356–372 (2006)

    Article  Google Scholar 

  30. Ngo, D.C.L.; Samsudin, A.; Abdullah, R.: Aesthetic measures for assessing graphic screens. J. Inf. Sci. Eng 16(1), 97–116 (2000)

    Google Scholar 

  31. Zen, M.; Vanderdonckt, J.: Towards an evaluation of graphical user interfaces aesthetics based on metrics. In: 2014 IEEE Eighth International Conference on Research Challenges in Information Science (RCIS), pp. 1–12. IEEE (2014)

  32. Hentati, M.; Trabelsi, A.; Ammar, L.B.; Mahfoudhi, A.: Towards optimizing the usability of user interface generated with model-driven development process. In: Human System Interactions (HSI), 2015 8th International Conference on, pages 206–212. IEEE (2015)

  33. Hentati, M.; Ammar, L.B.; Trabelsi, A.; Mahfoudhi, A.: An approach for incorporating the usability optimization process into the model transformation. In: International Conference on Intelligent Systems Design and Applications, pp. 879–888. Springer, Berlin (2016)

  34. Panach, J.I.; Condori-Fernández, N.; Vos, T.; Aquino, N.; Valverde, F.: Early usability measurement in model-driven development: definition and empirical evaluation. Int. J. Software Eng. Knowl. Eng. 21(03), 339–365 (2011)

    Article  Google Scholar 

  35. Hentati, M.; Ammar, L.B.; Trabelsi, A.; Mahfoudhi, A.: A fuzzy-logic system for the user interface usability measurement. In: 2016 17th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), pp. 133–138. IEEE (2016)

  36. Mamdani, E.H.; Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)

    Article  MATH  Google Scholar 

  37. Bechikh, S.; Said, L.B.; Ghédira, K.: Searching for knee regions of the pareto front using mobile reference points. Soft. Comput. 15(9), 1807–1823 (2011)

    Article  Google Scholar 

  38. Rachmawati, L.; Srinivasan, D.: Multiobjective evolutionary algorithm with controllable focus on the knees of the pareto front. IEEE Trans. Evolut. Comput. 13(4), 810–824 (2009)

    Article  Google Scholar 

  39. Caldiera, V.; Rombach, H.D.: The goal question metric approach. Encycl. Softw. Eng. 2(1994), 528–532 (1994)

    Google Scholar 

  40. Bouchelligua, W.; Mahfoudhi, A.; Mezhoudi, N.; Daassi, O.; Abed, M.: User interfaces modelling of workflow information systems. In: Workshop on Enterprise and Organizational Modeling and Simulation, pp. 143–163. Springer, Berlin (2010)

  41. Falessi, D.; Juristo, N.; Wohlin, C.; Turhan, B.; Münch, J.; Jedlitschka, A.; Oivo, M.: Empirical software engineering experts on the use of students and professionals in experiments. Empir. Softw. Eng. 23(1), 1–38 (2017)

    Google Scholar 

  42. Holzinger, A.: Usability engineering methods for software developers. Commun. ACM 48(1), 71–74 (2005)

    Article  Google Scholar 

  43. Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Regnell, B.; Wesslén, A.: Experimentation in Software Engineering. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  44. Campbell, D.; Fiske, D.: Convergent and discriminant validation by the multitrait-multimethods matrix. Personality 56, 162 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa Hentati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hentati, M., Trabelsi, A., Ben Ammar, L. et al. MoTUO: An Approach for Optimizing Usability Within Model Transformations. Arab J Sci Eng 44, 3253–3269 (2019). https://doi.org/10.1007/s13369-018-3462-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3462-1

Keywords

Navigation