Skip to main content
Log in

Effect of the Co-deposition of Pd and Pt on \(\hbox {TiO}_{2}\) Photoactivity

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

\(\hbox {TiO}_{2}\) was obtained by a simple sol–gel synthesis and subsequently modified by the addition of Pt and/or Pd particles on the surface by photodeposition. These photocatalysts were characterised by X-ray diffraction analysis, UV–Vis diffuse reflectance spectra, Brunauer–Emmett–Teller measurements, Fourier transform infrared spectroscopy, transmission electron microscopy, electron dispersive spectroscopy and X-ray photoelectron spectroscopy. Their photocatalytic activity was studied by following the degradation, mineralisation and detoxification of solutions of phenol, propanil and methylene blue. For comparison purposes, different commercial \(\hbox {TiO}_{2}\) catalysts were also tested: Kronos vlp7000, Millenium PC100, Aeroxide P90 and Aeroxide P25. This latter catalyst was also modified with Pt and/or Pd. The degradation kinetics of all the pollutants in aqueous solutions satisfactorily followed the pseudo-first order according to the Langmuir–Hinshelwood model in conditions of low concentration values. It was found that the simultaneous photodeposition of Pt and Pd contributed to enhancing photoactivity more than the individual deposition of either Pt or Pd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anas, M.; Han, D.S.; Mahmoud, K.; Park, H.; Abdel-Wahab, A.: Photocatalytic degradation of organic dye using titanium dioxide modified with metal and non-metal deposition. Mater. Sci. Semicond. Process. 41, 209–218 (2016)

    Article  Google Scholar 

  2. Sakthivel, S.; Shankar, M.V.; Palanichamy, M.; Arabindoo, B.; Bahnemann, D.W.; Murugesan, V.: Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on \(\text{ TiO }_{2}\) catalyst. Water Res. 38, 3001–3008 (2004)

    Article  Google Scholar 

  3. Albiter, E.; Hai, Z.; Alfaro, S.; Remita, H.; Valenzuela, M.A.; Colbeau-Justin, C.: A comparative study of photo-assisted deposition of silver nanoparticles on \(\text{ TiO }_{2}\). J. Nanosci. Nanotechnol. 13, 4943–4948 (2013)

    Article  Google Scholar 

  4. Sobana, N.; Muruganadham, M.; Swaminathan, M.: Nano-Ag particles doped \(\text{ TiO }_{2}\) for efficient photodegradation of direct azo dyes. J. Mol. Catal. A Chem. 258, 124–132 (2006)

    Article  Google Scholar 

  5. Li, M.; Yu, Z.; Liu, Q.; Sun, L.; Huang, W.: Photocatalytic decomposition of perfluorooctanoic acid by noble metallic nanoparticles modified \(\text{ TiO }_{2}\). Chem. Eng. J. 286, 232–238 (2016)

    Article  Google Scholar 

  6. Pulido Melián, E.; González Díaz, O.; Doña Rodríguez, J.M.; Colón, G.; Navío, J.A.; Macías, M.; Pérez, Peña J.: Effect of deposition of silver on structural characteristics and photoactivity of \(\text{ TiO }_{2}\)-based photocatalysts. Appl. Catal. B Environ. 127, 112–120 (2012)

    Article  Google Scholar 

  7. Diak, M.; Grabowska, E.; Zaleska, A.: Synthesis, characterization and photocatalytic activity of noble metal-modified \(\text{ TiO }_{2}\) nanosheets with exposed 0 0 1 facets. Appl. Surf. Sci. 347, 275–285 (2015)

    Article  Google Scholar 

  8. Vorontsov, A.V.; Stoyanova, I.V.; Kozlov, D.V.; Simagina, V.I.; Savinov, E.N.: Kinetics of the photocatalytic oxidation of gaseous acetone over platinized titanium dioxide. J. Catal. 189, 360–369 (2000)

    Article  Google Scholar 

  9. Iliev, V.; Tomova, D.; Todorovska, R.; Oliver, D.; Petrov, L.; Todorovsky, D.; Uzunova-Bujnova, M.: Photocatalytic properties of \(\text{ TiO }_{2}\) modified with gold nanoparticles in the degradation of oxalic acid in aqueous solution. Appl. Catal. A Gen. 313, 115–121 (2006)

    Article  Google Scholar 

  10. Teoh, W.Y.; Mädler, L.; Amal, R.: Inter-relationship between Pt oxidation states on \(\text{ TiO }_{2}\) and the photocatalytic mineralisation of organic matters. J. Catal. 251, 271–280 (2007)

    Article  Google Scholar 

  11. Denny, F.; Scott, J.; Chiang, K.; Teoh, W.Y.; Amal, R.: Insight towards the role of platinum in the photocatalytic mineralisation of organic compounds. J. Mol. Catal. A Chem. 263, 93–102 (2007)

    Article  Google Scholar 

  12. Santacruz-Chávez, J.A.; Oros-Ruiz, S.; Prado, B.; Zanella, R.: Photocatalytic degradation of atrazine using \({TiO}_{2}\) superficially modified with metallic nanoparticles. J. Environ. Chem. Eng. 3, 3055–3061 (2015)

    Article  Google Scholar 

  13. Chen, M.J.; Lo, S.L.; Lee, Y.C.; Huang, C.C.: Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified titanium dioxide. J. Hazard. Mater. 288, 168–175 (2015)

    Article  Google Scholar 

  14. Vaiano, V.; Iervolino, G.; Sannino, D.; Murcia, J.J.; Hidalgo, M.C.; Ciambelli, P.; Navío, J.A.: Photocatalytic removal of patent blue V dye on Au-TiO\(_2\) and Pt-TiO\(_2\) catalysts. Appl. Catal. B Environ. 188, 134–146 (2016)

    Article  Google Scholar 

  15. Maicu, M.; Hidalgo, M.C.; Colón, G.; Navío, J.A.: Comparative study of the photodeposition of Pt, Au and Pd on pre-sulphated \(\text{ TiO }_{2}\) for the photocatalytic decomposition of phenol. J. Photochem. Photobiol. A Chem. 217, 275–283 (2011)

    Article  Google Scholar 

  16. Murcia, J.J.; Hidalgo, M.C.; Navío, J.A.; Araña, J.; Doña-Rodríguez, J.M.: Study of the phenol photocatalytic degradation over \(\text{ TiO }_{2}\) modified by sulfation, fluorination, and platinum nanoparticles photodeposition. Appl. Catal. B Environ. 179, 305–312 (2015)

    Article  Google Scholar 

  17. Zielińska-Jurek, A.; Wysocka, I.; Janczarek, M.; Stampor, W.; Hupka, J.: Preparation and characterization of Pt-N/\(\text{ TiO }_{2}\) photocatalysts and their efficiency in degradation of recalcitrant chemicals. Sep. Purif. Technol. 156, 369–378 (2015)

    Article  Google Scholar 

  18. Zaleska-Medynska, A.; Marchelek, M.; Diak, M.; Grabowska, E.: Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties. Adv. Colloid Interface 229, 80–107 (2015)

    Article  Google Scholar 

  19. Durán-Álvarez, J.C.; Avella, E.; Ramírez-Zamora, R.M.; Zanella, R.: Photocatalytic degradation of ciprofloxacin using mono- (Au, Ag and Cu) and bi- (Au-Ag and Au-Cu) metallic nanoparticles supported on \(\text{ TiO }_{2}\) under UV-C and simulated sunlight. Catal. Today 266, 175–187 (2016)

    Article  Google Scholar 

  20. Sandoval, A.; Delannoy, L.; Méthivier, C.; Louis, C.; Zanella, R.: Synergetic effect in bimetallic Au-Ag/\(\text{ TiO }_{2}\) catalysts for CO oxidation: New insights from in situ characterization Appl. Catal. A Gen. 504, 287–294 (2015)

    Article  Google Scholar 

  21. Cybula, A.; Priebe, J.B.; Pohl, M.M.; Sobczak, J.W.; Schneider, M.; Zielińska-Jurek, A.; Brückner, A.; Zaleska, A.: The effect of calcination temperature on structure and photocatalytic properties of Au/Pd nanoparticles supported on \(\text{ TiO }_{2}\). Appl. Catal. B Environ. 152–153, 202–211 (2014)

    Article  Google Scholar 

  22. Gołlęebiewska, A.; Lisowski, W.; Jarek, M.; Nowaczyk, G.; Zielińska-Jurek, A.; Zalesk, A.: Visible light photoactivity of \(\text{ TiO }_{2}\) loaded with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles. Appl. Surf. Sci. 317, 1131–1142 (2014)

    Article  Google Scholar 

  23. Zielińska-Jurek, A.; Wei, Z.; Wysocka, I.; Szweda, P.; Kowalska, E.: The effect of nanoparticles size on photocatalytic and antimicrobial properties of Ag-Pt/\(\text{ TiO }_{2}\) photocatalysts. Appl. Surf. Sci. 353, 317–325 (2015)

    Article  Google Scholar 

  24. Kleina, M.; Nadolna, J.; Gołlęebiewska, A.; Mazierskic, P.; Klimczukd, T.; Remitae, H.; Zaleska-Medynska, A.: The effect of metal cluster deposition route on structure and photocatalytic activity of mono- and bimetallic nanoparticles supported on \(\text{ TiO }_{2}\) by radiolytic method. Appl. Surf. Sci. 378, 37–48 (2016)

    Article  Google Scholar 

  25. Zielińska-Jurek, A.; Hupka, J.: Preparation and characterization of Pt/Pd-modified titanium dioxide nanoparticles for visible light irradiation. Catal. Today 230, 181–187 (2014)

    Article  Google Scholar 

  26. Grabowska, E.; Marchelek, M.; Klimczuk, T.; Lisowski, W.; Zaleska-Medynsk, A.: Preparation, characterization and photocatalytic activity of \(\text{ TiO }_{2}\) microspheres decorated by bimetallic nanoparticles. J. Mol. Catal. A Chem. 424, 241–253 (2016)

    Article  Google Scholar 

  27. Tandon, S.P.; Gupta, J.P.: Measurement of forbidden energy gap of semiconductors by diffuse reflectance technique. Phys. Status Solidi B 38, 363–367 (1970)

    Article  Google Scholar 

  28. Araña, J.; Doña Rodríguez, J.M.; Gonzalez Díaz, O.; Herrera Melián, J.A.; Fernandez-Rodríguez, C.; Perez Pena, J.: The effect of acetic acid on the photocatalytic degradation of catechol and resorcinol. Appl. Catal. A Gen. 299, 274 (2006)

    Article  Google Scholar 

  29. Morterra, C.: An infrared spectroscopic study of anatase properties. Part 6.-Surface hydration and strong Lewis acidity of pure and sulphate-doped preparations. J. Chem. Soc.-Faraday Trans. 1 84, 1617–1637 (1988)

    Article  Google Scholar 

  30. Arrouvel, C.; Digne, M.; Breysse, M.; Toulhoat, H.; Raybaud, P.: Effects of morphology on surface hydroxyl concentration: a DFT comparison of anatase–\(\text{ TiO }_{2}\) and g-alumina catalytic supports. J. Catal. 222, 152–166 (2004)

    Article  Google Scholar 

  31. Munuera, G.; Moreno, F.; Gonzalez, F.: Reactivity of solids: proceedings of the seventh international symposium on the reactivity of solids. In: Anderson, J.S., Roberts, M.W., Stone, F.S. (eds.) A model for anatase TiO\(_2\) surfaces: interpretation of some interface processes, pp. 681–691. Chapman and Hall, London (1972)

  32. Araña, J.; Garriga i Cabo, C.; Doña-Rodríguez, J.M.; González-Díaz, O.; Herrera-Melián, J.A.; Pérez-Peña, J.: FTIR study of formic acid interaction with \(\text{ TiO }_{2}\) and \(\text{ TiO }_{2}\) doped with Pd and Cu in photocatalytic processes. Appl. Surf. Sci. 239, 60–71 (2004)

    Article  Google Scholar 

  33. Marcì, G.; Addamo, M.; Augugliaro, V.; Coluccia, S.; García-López, E.; Loddo, V.; Martra, G.; Palmisano, L.; Schiavello, M.: Photocatalytic oxidation of toluene on irradiated \(\text{ TiO }_{2}\): comparison of degradation performance in humidified air, in water and in water containing a zwitterionic surfactant. J. Photochem. Photobiol. A Chem. 160, 105–114 (2003)

    Article  Google Scholar 

  34. Szczcpankiewiecz, S.H.; Colussi, A.J.; Hoffmann, M.R.: Infrared spectra of photoinduced species on hydroxylated titania surfaces. J. Phys. Chem. B. 104, 9842–9850 (2000)

    Article  Google Scholar 

  35. Wang, N.; Li, J.; Zhu, L.; Dong, Y.; Tang, H.: Highly photocatalytic activity of metallic hydroxide/titanium dioxide nanoparticules prepared via a modified wet precipitation process. J. Photochem. Photobiol. A Chem. 198, 282–287 (2008)

    Article  Google Scholar 

  36. Vorontsov, A.V.; Savinov, E.N.; Zhensheng, J.: Influence of the form of photodeposited platinum on titania upon its photocatalytic activity in CO and acetone oxidation. J. Photochem. Photobiol. A Chem. 125, 113–117 (1999)

    Article  Google Scholar 

  37. Fujiwara, K.; Müller, U.; Pratsinis, S.E.: Pd subnano-clusters on \(\text{ TiO }_{2}\) for solar-light removal of NO. ACS Catal. 6, 1887–1893 (2016)

    Article  Google Scholar 

  38. Pulido Melián, E.; González Díaz, O.; Araña, J.; Doña Rodríguez, J.M.; Tello Rendón, E.; Herrera Melián, J.A.: Kinetics and adsorption comparative study on the photocatalytic degradation of \(o\)-, \(m\)- and \(p\)-cresol. Catal. Today 129, 256–262 (2007)

    Article  Google Scholar 

  39. González Sánchez, O.M.; Araña, J.; González Díaz, O.; Herrera Melián, J.A.; Doña Rodríguez, J.M.; Pérez Peña, J.: Detoxification of the herbicide propanil by means of fenton process and \(\text{ TiO }_{2}\) photocatalysis. J. Photochem. Photobiol. A Chem. 291, 34–43 (2014)

    Article  Google Scholar 

  40. Seck, E.I.; Doña-Rodríguez, J.M.; Fernández-Rodríguez, C.; Portillo-Carrizo, D.; Hernández-Rodríguez, M.J.; González-Díaz, O.M.; Pérez-Peña, J.: Solar photocatalytic removal of herbicides from real water by using sol-gel synthesized nanocrystalline \(\text{ TiO }_{2}\): Operational parameters optimization and toxicity studies. Sol. Energy 87, 150–157 (2013)

    Article  Google Scholar 

  41. Pulido Melián, E.; Henríquez-Cárdenes, E.; González Díaz, O.; Doña Rodríguez, J.M.: Study of adsorption and degradation of dimethylphthalate on \(\text{ TiO }_{2}\)-based photocatalysts. Chem. Phys. 475, 112–118 (2016)

    Article  Google Scholar 

  42. Hurum, D.C.; Agrios, A.G.; Crist, S.E.; Gray, K.A.; Rajh, T.; Thurnauer, M.C.: Probing reaction mechanisms in mixed phase \(\text{ TiO }_{2}\) by EPR. J. Electron Spectrosc. Relat. Phenom. 150, 155–163 (2006)

    Article  Google Scholar 

  43. Li, G.; Gray, K.A.: The solid-solid interface: explaining the high and unique photocatalytic reactivity of \(\text{ TiO }_{2}\)-based nanocomposite materials. Chem. Phys. 339, 173–187 (2007)

    Article  Google Scholar 

  44. Hurum, D.C.; Agrios, A.G.; Gray, K.A.; Rajh, T.; Thurnauer, M.C.: Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase \(\text{ TiO }_{2}\) using EPR. J. Phys. Chem. B. 107, 4545–4549 (2003)

    Article  Google Scholar 

  45. Hurum, D.C.; Gray, K.A.; Rajh, T.; Thurnauer, M.C.: Recombination pathways in the degussa P25 formulation of \(\text{ TiO }_{2}\): surface versus lattice mechanisms. J. Phys. Chem. B 109, 977–980 (2005)

    Article  Google Scholar 

  46. Murcia, J.J.; Hidalgo, M.C.; Navío, J.A.; Vaiano, V.; Ciambelli, P.; Sannino, D.: Ethanol partial photoxidation on Pt/\(\text{ TiO }_{2}\) catalysts as green route for acetaldehyde synthesis. Catal. Today 196, 101–109 (2012)

    Article  Google Scholar 

  47. Niu, W.: Metallic nanostructures: from controlled synthesis to applications. In: Xiong, Y., Lu, X. (eds.) Metallic Nanostructures: Fundamentals, pp. 1–47. Springer, Switzerland (2015)

  48. Michaelson, H.B.: The work function of the elements and its periodicity. J. Appl. Phys. 48, 4729–4733 (1977)

  49. Hidalgo, M.C.; Maicu, M.; Navío, J.A.; Colón, G.: Study of the synergic effect of sulphate pre-treatment and platinisation on the highly improved photocatalytic activity of \(\text{ TiO }_{2}\). Appl. Catal. B Environ. 81, 49–55 (2008)

    Article  Google Scholar 

  50. Fernández-Rodríguez, C.; Doña Rodríguez, J.M.; González-Díaz, O.; Seck, I.; Zerbani, D.; Portillo, D.; Pérez, Peña J.: Synthesis of highly photoactive \(\text{ TiO }_{2}\) and Pt/\(\text{ TiO }_{2}\) nanocatalysts for substrate-specific photocatalytic applications. Appl. Catal. B Environ. 125, 383–389 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Pulido Melián.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1302 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belfaa, K., Pulido Melián, E., González Díaz, O. et al. Effect of the Co-deposition of Pd and Pt on \(\hbox {TiO}_{2}\) Photoactivity. Arab J Sci Eng 44, 131–143 (2019). https://doi.org/10.1007/s13369-018-3275-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3275-2

Keywords

Navigation