Skip to main content
Log in

Effect of Ethylene Vinyl Acetate (EVA) on the Setting Time of Cement at Different Temperatures as well as on the Mechanical Strength of Concrete

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study presents the effect of ethylene vinyl acetate (EVA) on the setting time of cement at different temperatures as well as on the compressive, flexural and tensile strength of concrete. Setting time tests were conducted at various percentages of EVA at different temperatures (i-e 22, 35 and \(50\,^{\circ }\hbox {C}\)). It was found that the setting time was increasing with an increase in the EVA percentage. Moreover, for strength evaluation, samples of EVA-modified concrete were prepared with various percentages of EVA by weight of cement and then tested for compressive, flexural and tensile strength at the curing age of 3, 7 and 28 days. The results revealed that the compressive and flexural strength of EVA-modified concrete tended to increase at a rapid rate by incorporating EVA up to 16%, but beyond this percentage the rate of strength development become slow at all the ages, but in case of split tensile strength, it was maximum at 4% EVA and got decreased with further increase in EVA percentage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cresson, L.: Improved manufacture of rubber road-acing, rubber-flooring, rubber-tiling or other rubber-lining. British Patent 191, 12 (1923)

    Google Scholar 

  2. Lefebure, V.: Improvements in or relating to concrete, cements, plasters and the like. British Patent 217, 5 (1924)

    Google Scholar 

  3. Kong, X.M.; Wu, C.C.; Zhang, Y.R.; Li, J.L.: Polymer-modified mortar with a gradient polymer distribution: preparation, permeability and mechanical behavior. Constr. Build. Mater. 38, 195–203 (2013)

    Article  Google Scholar 

  4. Ohama, Y.: Polymers in concrete. In: Chandra, S., Ohama, Y. (eds.) Classification of Concrete-Polymer Composites, pp. 81–109. CRC Press, Boca Raton (1994)

    Google Scholar 

  5. Ohama, Y.; Ibe, H.; Mine, H.; Kato, K.: Cement mortars modified by SB latex with variable bound styrene. Rubber Chem. Technol. 37, 758–769 (1964)

    Article  Google Scholar 

  6. Folic, R.J.; Radonjanin, V.S.: Experimental research on polymer modified concrete. Am. Concr. Inst. 95, 463–469 (1998)

    Google Scholar 

  7. Jenni, A.; Zurbriggen, R.; Holzer, L.; Herwegh, M.: Changes in microstructures and physical properties of polymer-modified mortars during wet storage. Cem. Concr. Res. 36, 79–90 (2006)

    Article  Google Scholar 

  8. Pascal, S.; Alliche, A.; Pilvin, P.: Mechanical behavior of polymer modified mortars. Mater. Sci. Eng. A 380, 1–8 (2004)

    Article  Google Scholar 

  9. Hong-yun, Y.; Nai-xing, L.; Jing-yu, M.: The Design of the Polymer Cement Concrete Pavement and the Analysis of Test Road. Chongqing Jiaotong University, Chongqing (2005)

    Google Scholar 

  10. Miller, M.: Polymers in Cementitious Materials. iSmithers Rapra Publishing, Shawbury (2005)

    Google Scholar 

  11. Ohama, Y.: Handbook of Polymer-modified Concrete and Mortars: Properties and Process Technology. William Andrew, Park Ridge (1995)

    Google Scholar 

  12. Ohama, Y.: Polymer-based admixtures. Cem. Concr. Compos. 20, 189–212 (1998)

    Article  Google Scholar 

  13. Zhong, S.Y.; Chen, Z.Y.: Properties of latex blends and its modified cement mortars. Cem. Concr. Res. 32, 1515–1524 (2002)

    Article  Google Scholar 

  14. Zhong, S.Y.; Shi, M.L.; Chen, Z.Y.: The AC response of polymer-coated mortar specimens. Cem. Concr. Res. 32, 983–987 (2002)

    Article  Google Scholar 

  15. Yang, Z.; Shi, X.; Creighton, A.T.; Peterson, M.M.: Effect of styrene-butadiene rubber latex on the chloride permeability and microstructure of Portland cement mortar. Constr. Build. Mater. 23, 2283–2290 (2009)

    Article  Google Scholar 

  16. Mirza, J.; Mirza, M.S.; Lapointe, R.: Laboratory and field performance of polymer-modified cement-based repair mortars in cold climates. Constr. Build. Mater. 16, 365–74 (2002)

    Article  Google Scholar 

  17. Wang, R.; Wang, P.: Function of styrene-acrylic ester copolymer latex in cement mortar. Mater. Struct. 43, 443–51 (2010)

    Article  Google Scholar 

  18. Al-Zahrani, M.M.; Maslehuddin, M.; Al-Dulaijan, S.U.; Ibrahim, M.: Mechanical properties and durability characteristics of polymer and cement-based repair materials. Cem. Concr. Compos. 24, 527–37 (2003)

    Article  Google Scholar 

  19. Ohama, Y.: Polymer-based materials for repair and improved durability: Japanese experience. Constr. Build. Mater. 10, 77–82 (1996)

    Article  Google Scholar 

  20. Ohama, Y.: Principle of latex modification and some typical properties of latex-modified mortars and concretes adhesion; binders (materials); bond (paste to aggregate); carbonation; chlorides; curing; diffusion. Am. Concr. Inst. 84, 511–518 (1987)

    Google Scholar 

  21. Sakai, E.; Sugita, J.: Composite mechanism of polymer modified cement. Cem. Concr. Res. 25, 127–135 (1995)

    Article  Google Scholar 

  22. Berardi, V.P.; Mancusi, G.: A mechanical model for predicting the long term behavior of reinforced polymer concretes. Mech. Res. Commun. 50, 1–7 (2013)

    Article  Google Scholar 

  23. Afridi, M.U.K.; Ohama, Y.; Demura, K.; Lqbal, M.Z.: Development of polymer films by the coalescence of polymer particles in powdered and aqueous polymer-modified mortars. Cem. Concr. Res. 33, 1715–21 (2003)

    Article  Google Scholar 

  24. Schulze, J.: Influence of water–cement ratio and cement content on the properties of polymer-modified mortars. Cem. Concr. Res. 29, 909–915 (1999)

    Article  Google Scholar 

  25. Son, S.W.; Yeon, J.H.: Mechanical properties of acrylic polymer concrete containing methacrylic acid as an additive. Constr. Build. Mater. 37, 669–679 (2012)

    Article  Google Scholar 

  26. Shaker, F.A.; El-Dieb, A.S.; Reda, M.M.: Durability of styrene-butadiene latex modified concrete. Cem. Concr. Res. 27, 711–720 (1997)

    Article  Google Scholar 

  27. Rossignolo, J.A.; Agnesini, M.V.C.: Durability of polymer-modified lightweight aggregate concrete. Cem. Concr. Compos. 26, 375–380 (2004)

    Article  Google Scholar 

  28. ACI-Committee-548: Polymer-Modified Concrete, ACI 548. 3R-03. American Concrete Institute, Farmington Hills (2003)

  29. Chung, D.D.L.: Use of polymers for cement-based structural materials. J. Mater. Sci. 39, 2973–2978 (2004)

    Article  Google Scholar 

  30. Ramakrishnan, V.: Latex-Modified Concretes and Mortars. Transportation Research Board, Washington (1992)

    Google Scholar 

  31. Schulze, J.; Killermann, O.: Long-term performance of redispersible powders in mortars. Cem. Concr. Res. 31, 357–362 (2001)

    Article  Google Scholar 

  32. Pei, M.; Kim, W.; Hyung, W.; Ango, A.J.; Soh, Y.: Effects of emulsifiers on properties of poly(styrene-butyl acrylate) latex-modified mortars. Cem. Concr. Res. 32, 837–841 (2002)

    Article  Google Scholar 

  33. Barluenga, G.; Hernández-Olivares, F.: SBR latex modified mortar rheology and mechanical behaviour. Cem. Concr. Res. 34, 527–535 (2004)

    Article  Google Scholar 

  34. Bureau, L.; Alliche, A.; Pilvin, P.; Pascal, S.: Mechanical characterization of a styrene-butadiene modified mortar. Mater. Sci. Eng. 308, 233–40 (2001)

    Article  Google Scholar 

  35. Khan, B.; Baradan, B.: Effect of sugar on setting time of cement. Q. Sci. Vision. 8, 71–78 (2002)

    Google Scholar 

  36. Wade, S.A.; Nixon, J.M.; Schindler, A.K.; Barnes, R.W.: Effect of temperature on the setting behavior of concrete. J. Mater. Civ. Eng. 22, 214 (2010)

    Article  Google Scholar 

  37. Ezziane, k; Kadri, E.H.; Hallal, A.; Duval, R.: Effect of mineral additives on the setting of blended cement by the maturity method. Mater. Struct. 43, 393–401 (2010)

    Article  Google Scholar 

  38. Kim, H.J.; Won-Jun, P.: Combustion and mechanical properties of polymer-modified cement mortar at high temperature. Adv. Mater. Sci. Eng. (2017). https://doi.org/10.1155/2017/5853687

    Google Scholar 

  39. Silva, D.A.; Monteiro, P.J.: The influence of polymers on the hydration of Portland cement phases analyzed by soft X-ray transmission microscopy. Cem. Concr. Res. 36, 1501–1507 (2006)

    Article  Google Scholar 

  40. Stefan, M.B.: Interaction of Latex Polymers with Cement-Based Building Materials. The dissertation, Technical University of Munich, Faculty of Chemistry (2014)

  41. Razaqpur, A.G.; Isgor, B.O.; Greenaway, S.; Selley, A.: Concrete contribution to the shear resistance of fiber reinforced polymer reinforced concrete members. ASCE J. Compos. Constr. 5, 452–460 (2004)

    Article  Google Scholar 

  42. Gorninski, J.P.; Dal Molin, D.C.; Kazmierczak, C.S.: Strength degradation of polymer concrete in acidic environments. Cem. Concr. Compos. 8, 637–645 (2007)

    Article  Google Scholar 

  43. Abdel-Fattah, H.; El-Hawary, M.M.: Flexural behavior of polymer concrete. Constr. Build. Mater. 5, 253–262 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This study did not obtain any grant from any funding agency in commercial, public or any not-for-profit organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashif Ali Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, K.A., Ahmad, I. & Alam, M. Effect of Ethylene Vinyl Acetate (EVA) on the Setting Time of Cement at Different Temperatures as well as on the Mechanical Strength of Concrete. Arab J Sci Eng 44, 4075–4084 (2019). https://doi.org/10.1007/s13369-018-3249-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3249-4

Keywords

Navigation