Skip to main content

Advertisement

Log in

Cytokines/Chemokines Profile in Rats Treated with Euphorbia tirucalli Extract

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Drug development can depend on natural products. The Euphorbiaceae family, especially the genus Euphorbia, with a distinct regard to the Euphorbia tirucalli, is used as folk medicine in some Saudi Arabian regions. There is a lot of evidence that its latex has immunomodulatory activities. It is possible that the mechanism for such activities involves immune cells activation and production of cytokines. For the first time, in this work we aim to evaluate the production of \(\hbox {T}_{\mathrm{H}}1\) cytokines (IFN-\(\upgamma \), TNF-\(\upalpha \), GM-CSF and IL-2), \(\hbox {T}_{\mathrm{H}}2\) cytokines (IL-4, IL-6, IL-10 and IL-13) and chemokines (IL-\(1\upalpha \), IL-\(1\upbeta \), IL-12 and RANTES) in vivo by treating rats with ethanol extract of E. tirucalli latex gathered from Abha, Aseer, KSA. Adult male Sprague Dawley rats were divided into three groups: group 1 received no treatment, while groups 2 and 3 orally received 0.250 mg latex extract in 0.5 ml daily for 21 or 35 days, respectively. At the end of the experiment, blood was taken and tested for the concentrations of \(\hbox {T}_{\mathrm{H}}1\) and \(\hbox {T}_{\mathrm{H}}2\) cytokines and chemokines. The main compound of the purified extract was euphol. The extract presented a potential to induce significant increases in IL-\(1\upbeta \), IL-2, IL-6, GM-CSF and RANTES. In conclusion, ethanol extract contained mainly the euphol. The extract made some immunological stimulation that appeared in \(\hbox {T}_{\mathrm{H}}1\) and \(\hbox {T}_{\mathrm{H}}2\) cytokines and chemokines profiles changes. These changes are in favor of enhancing and enforcing the immune system. This extract can be recommended as a supplementary material for immunological drugs such as vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Webster, G.L.: Classification of the Euphorbiaceae. Mo. Bot. Gard. 81, 3–32 (1994)

    Article  Google Scholar 

  2. Seigler, D.S.: Phytochemistry and systematics of the Euphorbiaceae. Ann. Mo. Bot. Gard. 81, 380 (1994). https://doi.org/10.2307/2992104

    Article  Google Scholar 

  3. Rizk, A.-F.M.: The chemical constituents and economic plants of the Euphorbiaceae. Bot. J. Linn. Soc. 94, 293–326 (1987). https://doi.org/10.1111/j.1095-8339.1987.tb01052.x

    Article  Google Scholar 

  4. Schuhly, W.: Major herbs of ayurveda (2004)

  5. Lai, X.Z.; Yang, Y.B.; Shan, X.L.: The investigation of Euphorbiaceous medicinal plants in Southern China. Econ. Bot. 58, S307–S320 (2004). https://doi.org/10.1663/0013-0001(2004)58[s307:tioemp]2.0.co;2

    Article  Google Scholar 

  6. Shlamovitz, G.Z.; Gupta, M.; Diaz, J.A.: A case of acute keratoconjunctivitis from exposure to latex of Euphorbia tirucalli (pencil cactus). J. Emerg. Med. 36, 239–241 (2009). https://doi.org/10.1016/j.jemermed.2007.03.034

    Article  Google Scholar 

  7. Gupta, B.; Srivastava, S.R.; Goyal, R.: Therapeutic uses of Euphorbia thymifolia: a review. Pharmacogn. Rev. 1, 299–304 (2007)

    Google Scholar 

  8. Appendino, G.; Szallasi, A.: Euphorbium: modern research on its active principle, resiniferatoxin, revives an ancient medicine. Life Sci. 60, 681–696 (1997). https://doi.org/10.1016/s0024-3205(96)00567-x

    Article  Google Scholar 

  9. Elujoba, A.A.; Odeleye, O.M.; Ogunyemi, C.M.: Traditional medicine development for medical and dental primary health care delivery system in Africa. Afr. J. Tradit. Complement. Altern. Med. 2, 46–61 (2004). https://doi.org/10.4314/ajtcam.v2i1.31103

    Google Scholar 

  10. Ekpo, O.E.; Pretorius, E.: Asthma, Euphorbia hirta and its anti-inflammatory properties (2007)

  11. Kiem, P.Van; Thu, V.K.; Yen, P.H.; Nhiem, N.X.; Tung, N.H.; Cuong, N.X.; Minh, C.Van; Huong, H.T.; Hyun, J.-H.; Kang, H.-K.; Kim, Y.H.: New triterpenoid saponins from Glochidion eriocarpum and their cytotoxic activity. Chem. Pharm. Bull. (Tokyo) 57, 102–105 (2009). https://doi.org/10.1248/cpb.57.102

    Article  Google Scholar 

  12. Mathabe, M.C.; Hussein, A.A.; Nikolova, R.V.; Basson, A.E.; Meyer, J.J.M.; Lall, N.: Antibacterial activities and cytotoxicity of terpenoids isolated from Spirostachys africana. J. Ethnopharmacol. 116, 194–197 (2008). https://doi.org/10.1016/j.jep.2007.11.017

    Article  Google Scholar 

  13. Gupta, N.; Vishnoi, G.; Wal, A.; Wal, P.: Medicinal value of Euphorbia tirucalli. Syst. Rev. Pharm. 4, 40 (2013). https://doi.org/10.4103/0975-8453.135843

    Article  Google Scholar 

  14. Kumar, A.; Prasad, M.R.; Mishra, D.; Srivastav, S.K.; Srivastav, A.K.: Toxicity of aqueous extract of Euphorbia tirucalli latex on catfish, Heteropneustes fossilis. Ecotoxicol. Environ. Saf. 73, 1671–1673 (2010). https://doi.org/10.1016/j.ecoenv.2010.08.003

    Article  Google Scholar 

  15. Brasileiro, B.G.; Pizziolo, V.R.; Raslan, D.S.; Jamal, C.M.; Silveira, D.: Antimicrobial and cytotoxic activities screening of some Brazilian medicinal plants used in Governador Valadares district. Rev. Bras. Ciências Farm. 42, 195–202 (2006). https://doi.org/10.1590/s1516-93322006000200004

    Article  Google Scholar 

  16. Parekh, J.; Chanda, S.: Antibacterial and phytochemical studies on twelve species of Indian medicinal plants. Afr. J. Biomed. Res. (2010). https://doi.org/10.4314/ajbr.v10i2.50624

  17. Lin, S.-J.; Yeh, C.-H.; Yang, L.-M.; Liu, P.-C.; Hsu, F.-L.: Phenolic compounds from Formosan Euphorbia tirucalli. J. Chin. Chem. Soc. 48, 105–108 (2001). https://doi.org/10.1002/jccs.200100019

    Article  Google Scholar 

  18. Uchida, H.; Sugiyama, R.; Nakayachi, O.; Takemura, M.; Ohyama, K.: Expression of the gene for sterol-biosynthesis enzyme squalene epoxidase in parenchyma cells of the oil plant, Euphorbia tirucalli. Planta 226, 1109–1115 (2007). https://doi.org/10.1007/s00425-007-0557-4

    Article  Google Scholar 

  19. Valadares, M.C.; Carrucha, S.G.; Accorsi, W.; Queiroz, M.L.S.: Euphorbia tirucalli L. modulates myelopoiesis and enhances the resistance of tumour-bearing mice. Int. Immunopharmacol. 6, 294–299 (2006). https://doi.org/10.1016/j.intimp.2005.07.013

    Article  Google Scholar 

  20. Kuster, R.M.; Caxito, M.L.C.; Sabino, K.C.C.; da Costa, H.B.; Tose, L.V.; Romão, W.; Vaz, B.G.; Silva, A.G.: Identification of maloyl glucans from Euphorbia tirucalli by ESI-(–)-FT-ICR MS analyses. Phytochem. Lett. 12, 209–214 (2015). https://doi.org/10.1016/j.phytol.2015.04.008

    Article  Google Scholar 

  21. Cataluña, P.; Rates, S.M.K.: The traditional use of the latex from Euphorbia tirucalli Linnaeus (Euphorbiaceae) in the treatment of cancer in South Brazil. Acta Hortic. 501, 289–296 (1999). https://doi.org/10.17660/actahortic.1999.501.46

    Article  Google Scholar 

  22. Furstenberber, G.; Hecker, E.: On the active principles of the spurge family (Euphorbiaceae): XI. The irritant and tumor promoting diterpene esters of Euphorbia tirucalli L. originating from South Africa. Z. Naturforsch. 40, 631–646 (1985)

    Google Scholar 

  23. Sadeghi-Aliabadi, H.; Sajjadi, S.E.; Khodamoradi, M.: Cytotoxicity of Euphorbia macroclada on MDA-MB-468 breast cancer cell line. Iran. J. Pharm. Sci. 5, 103–108 (2009)

    Google Scholar 

  24. Zhang, L.; Gao, L.; Li, Z.; Yan, X.; Yang, Y.; Tang, Y.; Cao, Y.; Ding, A.: Bio-guided isolation of the cytotoxic terpenoids from the roots of Euphorbia kansui against human normal cell lines L-O2 and GES-1. Int. J. Mol. Sci. 13, 11247–11259 (2012). https://doi.org/10.3390/ijms130911247

    Article  Google Scholar 

  25. Mwine, J.; Van Damme, P.; Hastilestari, B.R.; Papenbrock, J.: Euphorbia tirucalli L. (Euphorbiaceae)—the miracle tree: current status of knowledge. https://doi.org/10.1021/bk-2013-1127.ch001 (2013)

  26. Baniadam, S.; Rahiminejad, M.R.; Ghannadian, M.; Saeidi, H.; Ayatollahi, A.M.; Aghaei, M.: Cycloartane triterpenoids from Euphorbia macrostegia with their cytotoxicity against MDA-MB48 and MCF-7 cancer cell lines. Iran. J. Pharm. Res. 13, 135–141 (2014)

    Google Scholar 

  27. Duarte, N.; Ramalhete, C.; Varga, A.; Molnar, J.; Ferreira, M.J.: Multidrug resistance modulation and apoptosis induction of cancer cells by terpenic compounds isolated from Euphorbia species. Anticancer Res. 29, 4467–4472 (2009)

    Google Scholar 

  28. Hsieh, W.-T.; Lin, H.-Y.; Chen, J.-H.; Kuo, Y.-H.; Fan, M.-J.; Wu, R.S.-C.; Wu, K.-C.; Wood, W.G.; Chung, J.-G.: Latex of Euphorbia antiquorum induces apoptosis in human cervical cancer cells via c-jun N-terminal kinase activation and reactive oxygen species production. Nutr. Cancer 63, 1339–1347 (2012)

    Article  Google Scholar 

  29. Alakurtti, S.; Mäkelä, T.; Koskimies, S.; Yli-Kauhaluoma, J.: Pharmacological properties of the ubiquitous natural product betulin. Eur. J. Pharm. Sci. 29, 1–13 (2006)

    Article  Google Scholar 

  30. Kasperczyk, H.; La Ferla-Brühl, K.; Westhoff, M.A.; Behrend, L.; Zwacka, R.M.; Debatin, K.-M.; Fulda, S.: Betulinic acid as new activator of NF-\(\upkappa \)B: molecular mechanisms and implications for cancer therapy. Oncogene 24, 6945–6956 (2005)

    Article  Google Scholar 

  31. Akihisa, T.; Tokuda, H.; Ichiishi, E.; Mukainaka, T.; Toriumi, M.; Ukiya, M.; Yasukawa, K.; Nishino, H.: Anti-tumor promoting effects of multiflorane-type triterpenoids and cytotoxic activity of karounidiol against human cancer cell lines. Cancer Lett. 173, 9–14 (2001). https://doi.org/10.1016/s0304-3835(01)00689-9

    Article  Google Scholar 

  32. Dutra, R.C.; de Cezaro de Souza, P.R.; Bento, A.F.; Marcon, R.; Bicca, M.A.; Pianowski, L.F.; Calixto, J.B.: Euphol prevents experimental autoimmune encephalomyelitis in mice: evidence for the underlying mechanisms. Biochem. Pharmacol. 83, 531–542 (2012). https://doi.org/10.1016/j.bcp.2011.11.026

    Article  Google Scholar 

  33. Passos, G.F.; Medeiros, R.; Marcon, R.; Nascimento, A.F.Z.; Calixto, J.B.; Pianowski, L.F.: The role of PKC/ERK1/2 signaling in the anti-inflammatory effect of tetracyclic triterpene euphol on TPA-induced skin inflammation in mice. Eur. J. Pharmacol. 698, 413–420 (2013). https://doi.org/10.1016/j.ejphar.2012.10.019

    Article  Google Scholar 

  34. Abbas, A.K.; Lichtman, A.; Pillai, S.: Cellular and Molecular Immunology. Elsevier, Amsterdam (2014)

    Google Scholar 

  35. Vianna, H.R.; Soares, C.M.B.M.; Tavares, M.S.; Teixeira, M.M.; Silva, A.C.S.: e: Inflammation in chronic kidney disease: the role of cytokines. J. Bras. Nefrol. 33, 351–364 (2011)

    Article  Google Scholar 

  36. Nedoszytko, B.; Sokołowska-Wojdyło, M.; Ruckemann-Dziurdzińska, K.; Roszkiewicz, J.; Nowicki, R.J.: Chemokines and cytokines network in the pathogenesis of the inflammatory skin diseases: atopic dermatitis, psoriasis and skin mastocytosis. Adv. Dermatol. Allergol. 31, 84–91 (2014)

    Article  Google Scholar 

  37. Kaufmann, S.H.: Lymphokines, interleukins, cytokines: function and action. Immun. Infekt. 15, 127–134 (1987)

    Google Scholar 

  38. Mosmann, T.R.; Coffman, R.L.: THI and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Ann. Rev. Immunol. 7, 145–73 (1989)

    Article  Google Scholar 

  39. Borish, L.C.; Steinke, J.W.: 2. Cytokines and chemokines. J. Allergy Clin. Immunol. 111, S460–S475 (2003). https://doi.org/10.1067/mai.2003.108

    Article  Google Scholar 

  40. Khatami, M.; Pourseyedi, S.; Khatami, M.; Hamidi, H.; Zaeifi, M.; Soltani, L.: Synthesis of silver nanoparticles using seed exudates of Sinapis arvensis as a novel bioresource, and evaluation of their antifungal activity. Bioresour. Bioprocess. 2, 19 (2015). https://doi.org/10.1186/s40643-015-0043-y

    Article  Google Scholar 

  41. Chen, C.L.; Chen, Y.P.; Lin, M.W.; Huang, Y.B.; Chang, F.R.; Duh, T.H.; Wu, D.C.; Wu, W.C.; Kao, Y.C.; Yang, P.H.: Euphol from Euphorbia tirucalli negatively modulates TGF-\(\upbeta \) responsiveness via TGF-\(\upbeta \) receptor segregation inside membrane rafts. PLoS ONE 10, e0140249 (2015). https://doi.org/10.1371/journal.pone.0140249

    Article  Google Scholar 

  42. Munhoz, A.C.M.; Minozzo, B.R.; Cruz, L.S.; Oliveira, T.L.; Machado, W.M.; Pereira, A.V.; Fernandes, D.; Manente, F.A.; Vellosa, J.C.R.; Nepel, A.; Barison, A.; Beltrame, F.L.: Chemical and pharmacological investigation of the stem bark of Synadenium grantii. Planta Med. 80, 458–464 (2014). https://doi.org/10.1055/s-0034-1368300

    Article  Google Scholar 

  43. Amirghofran, Z.; Azadmehr, A.; Bahmani, M.; Javidnia, K.: Stimulatory effects of Euphorbia cheiradenia on cell mediated immunity and humoral antibody synthesis. Iran. J. Immunol. 5, 115–123 (2008)

    Google Scholar 

  44. Singh, N.; Husain, S.; Limaye, A.P.; Pursell, K.; Klintmalm, G.B.; Pruett, T.L.; Somani, J.; Stosor, V.; del Busto, R.; Wagener, M.M.; Steele, C.: Systemic and cerebrospinal fluid T-helper cytokine responses in organ transplant recipients with Cryptococcus neoformans infection. Transpl. Immunol. 16, 69–72 (2006). https://doi.org/10.1016/j.trim.2006.03.009

    Article  Google Scholar 

  45. Betancur-Galvis, L.; Morales, G.; Forero, J.; Roldan, J.: Cytotoxic and antiviral activities of Colombian medicinal plant extracts of the Euphorbia genus. Mem. Inst. Oswaldo Cruz Rio Janeiro 97, 541–546 (2002). https://doi.org/10.1590/S0074-02762002000400017

    Article  Google Scholar 

  46. Rahuman, A.A.; Gopalakrishnan, G.; Venkatesan, P.; Geetha, K.: Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res. 102, 867–873 (2008). https://doi.org/10.1007/s00436-007-0839-6

    Article  Google Scholar 

  47. Arend, W.P.; Palmer, G.; Gabay, C.: \(\{\text{ IL }\}-1\), \(\{\text{ IL }\}-18\), and \(\{\text{ IL }\}-33\) families of cytokines. Immunol. Rev. 223, 20–38 (2008). https://doi.org/10.1111/j.1600-065x.2008.00624.x

    Article  Google Scholar 

  48. Dinarello, C.A.: Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27, 519–550 (2009). https://doi.org/10.1146/annurev.immunol.021908.132612

    Article  Google Scholar 

  49. Jücker, M.; Abts, H.; Li, W.; Schindler, R.; Merz, H.; Günther, A.; von Kalle, C.; Schaadt, M.; Diamantstein, T.; Feller, A.C.: Expression of interleukin-6 and interleukin-6 receptor in Hodgkin’s disease. Blood 77, 2413–8 (1991)

    Google Scholar 

  50. Del Prete, G.; De Carli, M.; Almerigogna, F.; Giudizi, M.G.; Biagiotti, R.; Romagnani, S.: Human IL-10 is produced by both type 1 helper (Th1) and type 2 helper (Th2) T cell clones and inhibits their antigen-specific proliferation and cytokine production. J. Immunol. 150, 353–360 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona Kilany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, E.H., Shaker, K.H., Kilany, M. et al. Cytokines/Chemokines Profile in Rats Treated with Euphorbia tirucalli Extract. Arab J Sci Eng 43, 3443–3451 (2018). https://doi.org/10.1007/s13369-018-3119-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3119-0

Keywords

Navigation