Skip to main content

Advertisement

Log in

The Vortex Pump Under Highly Viscous Liquid Flow Conditions

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The hydraulic performance and flow patterns in a standard motor-connected vortex pump with a specific speed of 76 are tackled by using CFD method under water and highly viscous oil flow conditions. The variations in performance curve and hydraulic loss caused from increased liquid viscosity are clarified; the flow rate, head and efficiency correction factors are correlated with impeller Reynolds number under three operating conditions and compared with centrifugal pumps. The flow patterns in the casing chamber, meridional plane and blade-to-blade plane are demonstrated. The impeller disc friction loss power and dimensionless liquid angular velocity in the casing chamber, incidence loss and slip factor are discussed. The pump hydraulic loss and total efficiency were decomposed and presented. It is shown that liquid viscosity exhibits a less effect on both flow rate and efficiency correction factors, but a more substantial influence on head correction factor. If the Reynolds number is not smaller than \(1\times 10^{4}\), the vortex pump can maintain a better performance and is suitable to transport liquids more viscous than water. The impeller disc friction loss power in the vortex pump is only 5% of the shaft power in maximum, so the vortex pump is a pump with lower impeller disc friction loss in comparison with centrifugal pumps. The circulating flow efficiency is volumetric efficiency actually and is the factor controlling the total efficiency of the pump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rütschi, K.: Die Arbeitsweise von freistrompumpen. Schweizerische Bauzeitung 86(32), 575–582 (1968)

    Google Scholar 

  2. Ohba, H.; Nakashima, Y.; Shiramoto, K.; Shiramoto, K.; Kojima, T.: A study on internal flow and performance of a vortex pump: part 2-a comparison between analysis and experimental results, and a design method of pump. Bull. JSME 26(216), 1007–1013 (1983)

    Article  Google Scholar 

  3. Aoki, M.: Studies on the vortex pump (2nd report, pump performance). Bull. JSME 26(213), 394–398 (1983)

    Article  Google Scholar 

  4. Schivley, G.P.; Dussourd, J.L.: An analytical and experimental study of a vortex pump. Trans. ASME Ser. D 92(4), 889–900 (1970)

    Article  Google Scholar 

  5. Ohba, H.; Nakashima, Y.; Shiramoto, K.; Shiramoto, K.; Kozima, T.: A study on performance and internal flow pattern of a vortex pump. Bull. JSME 21(162), 1741–1749 (1978)

    Article  Google Scholar 

  6. Aoki, M.: Studies on the vortex pump (1st report, internal flow). Bull. JSME 26(213), 387–393 (1983)

    Article  Google Scholar 

  7. Aoki, M.: Studies on the vortex pump (3rd report, estimation of pump performance). Bull. JSME 26(216), 1014–1019 (1983)

    Article  Google Scholar 

  8. Ohba, H.; Nakashima, Y.; Shiramoto, K.; Shiramoto, K.: On the performance of a vortex pump for solid–liquid fluid. Turbomachinery 10(2), 18–24 (1982)

    Google Scholar 

  9. Sha, Y.; Liu, X.: Performance test on solid–liquid two-phase flow hydrotransport of vortex pump. Trans. Chin. Soc. Agric. Eng. 29(22), 76–82 (2013)

    Google Scholar 

  10. Kikuyama, K.; Murakami, M.; Minemura, K.; Asakura, E.; Ikegami, T.: The effects of entrained air upon a vortex pump performance. Trans. JSME Ser. B 52(473), 393–400 (1986)

    Article  Google Scholar 

  11. Sha, Y.; Liu, X.: Numerical calculation on gas–liquid two-phase hydrotransport and flow field measurement in volute with probes for vortex pump. Trans. Chin. Soc. Agric. Eng. 30(18), 93–100 (2014)

    Google Scholar 

  12. Yang, M.; Gao, B.; Liu, D.; Gu, H.; Li, H.: Experimental investigation of salt-out two-phase flow in a vortex pump by PDPA measurements. J. Eng. Thermophys. 29(2), 237–240 (2008)

    Google Scholar 

  13. Yang, M.; Gao, B.; Liu, D.; Li, H.; Gu, H.: Analysis on liquid–solid two-phase flow field in a vortex pup by PDPA measurement. Trans. Chin. Soc. Agric. Mach. 38(12), 53–57 (2007)

    Google Scholar 

  14. Gao, B.; Yang, M.: Particle concentration distribution and its effect on salt-out features in a vortex pump. J. Eng. Thermophys. 30(12), 2031–2033 (2009)

    Google Scholar 

  15. Gao, B.; Yang, M.: Research on turbulent velocity fluctuations of salt-out particles in a vortex pump volute. J. Eng. Thermophys. 31(2), 275–278 (2010)

    Google Scholar 

  16. Ohba, H.; Nakashima, Y.; Shiramoto, K.: A study on internal flow and performance of a vortex pump: part 1 theoretical analysis. Bull. JSME 26(216), 999–1006 (1983)

    Article  Google Scholar 

  17. Chen, H.: A study on internal flow field in a vortex pump. Trans. Chin. Soc. Agric. Mach. 24(2), 24–27 (1993)

    Google Scholar 

  18. Shi, W.; Wang, Y.; Kong, F.; Sha, Y.; Yuan, H.: Numerical simulation of internal flow field within the volute of vortex pump. Trans. Chin. Soc. Agric. Eng. 21(9), 72–75 (2005)

    Google Scholar 

  19. Xia, P.; Liu, S.; Wu, Y.: Numerical simulation of steady flow in vortex pump. J. Eng. Thermophys. 27(5), 420–422 (2006)

    Google Scholar 

  20. Shi, W.; Wang, Y.; Sha, Y.; Liu, H.; Wang, Z.: Research on the internal flow of vortex pump. Trans. Chin. Soc. Agric. Eng. 37(1), 47–50 (2006)

    Google Scholar 

  21. Yang, M.; Gao, B.; Gu, H.; Li, H.: Measurement on 3D turbulent flow field in vortex pump. Drain. Irrig. Mach. 26(1), 60–63 (2008)

    Google Scholar 

  22. Sha, Y.: Experiments on performance and internal flow of a vortex pump. Trans. Chin. Soc. Agric. Eng. 27(4), 141–146 (2011)

    Google Scholar 

  23. Cervinka, M.: Computational study of sludge pump design with vortex impeller. In: Proceedings of 18th International Conference on Engineering Mechanics, May 14–17, 2012, pp. 191–201, Svratka, Czech Republic (2012)

  24. Zhang, D.; Yang, M.; Gao, B.; Lu, B.: Particle concentration distribution and its effect on performance in a vortex pump. Fluid Mach. 42(5), 22–25 (2013)

    Google Scholar 

  25. Yang, M.; Gao, B.; Li, H.; Gu, H.: Simulation and experimental research on salt-out two-phase flow field in a vortex pump. Chin. J. Mech. Eng. 44(12), 42–48 (2008)

    Article  Google Scholar 

  26. Qian, J.; Yang, M.; Cao, Y.; Gao, B.; Wang, H.: CFD–PBM coupled calculation on liquid-solid two-phase flow field in a vortex pump. Fluid Mach. 42(4), 31–35 (2014)

    Google Scholar 

  27. Steinmann, A.; Wurm, H.; Otto, A.: Numerical and experimental investigations of the unsteady cavitating flow in a vortex pump. In: The 9th International Conference on Hydrodynamics, Shanghai, China, October 11–15 (2010)

  28. Gerlach, A.; Preuss, E.; Thamsen, P.U.; Lykholt-Ustrup, F.: Numerical simulations of the internal flow pattern of a vortex pump compared to the Hamel–Oseen vortex. J. Mech. Sci. Technol. 31(4), 1711–1719 (2017)

    Article  Google Scholar 

  29. Li, W.: A CFD prediction of hydraulic and cavitation performance of a vortex pump as turbine. J. Xihua Univ. (Nat. Sci. Ed.) 36(1), 60–68 (2017)

    MathSciNet  Google Scholar 

  30. Fluent Inc., FLUENT 6.2 User’s Guide, Volume 1 and 2, Fluent Inc, Lebanon, NH 03766, USA (2005)

  31. Li, W.: Impeller trimming of an industrial centrifugal oil pump. Int. J. Adv. Des. Manuf. Technol. 5(1), 1–10 (2011)

    Article  MathSciNet  Google Scholar 

  32. He, X.; Yang, Q.: A comparison of various formulas of hydraulic, volumetric and mechanical efficiencies for centrifugal pumps. Gen. Mach. 10, 66–69 (2005)

    Google Scholar 

  33. Li, W.; Hu, Z.: Experiments on performance of a centrifugal highly viscous oil pump. Fluid Mach. 25(2), 3–8 (1997)

    Google Scholar 

  34. Li, W.; Su, F.; Xiao, C.: Experimental investigations of performance of a commercial centrifugal oil pump. ASME J. Fluids Eng. Pump Technol. 124(2), 554–557 (2002)

    Article  Google Scholar 

  35. Toyokura, T.; Kurokawa, J.; Kanemoto, T.: Performance improvement of centrifugal pump for high viscosity liquid. Turbomachinery 7(2), 8–15 (1979)

    Google Scholar 

  36. Toyokura, T.; Kanemoto, T.; Masuda, K.: Performance of non-clog type centrifugal pump using high viscosity liquid. Turbomachinery 8(2), 36–40 (1980)

    Google Scholar 

  37. Ladouani, A.; Nemdili, A.: Development of new models of performance correction factors of centrifugal pumps as a function of Reynolds number and specific speed. Forsch. Ingenieurwes. 77, 59–69 (2013)

    Article  Google Scholar 

  38. Ippen, A.T.: The influence of viscosity on centrifugal pump performance. Trans. ASME 68(8), 823–848 (1946)

    Google Scholar 

  39. Aoki, K.; Yamamoto, T.; Ohta, H.; Nakayama, Y.: Study on centrifugal pump for high viscosity: effect of impeller outlet angle on the pump performance. Trans. JSME Ser. B 51(468), 2753–2758 (1985)

    Article  Google Scholar 

  40. Torabi, R.; Nourbakhsh, S.A.: The effect of viscosity on performance of a low specific speed centrifugal pump. Int. J. Rotating Mach. (2016). https://doi.org/10.1155/2016/3878357

  41. Spence, S.W.; Artt, D.W.: An experimental assessment of incidence loses in a radial inflow turbine rotor. Proc. Inst. Mech. Eng. A 212, 43–53 (1998)

    Article  Google Scholar 

  42. Stahler, A.F.: The slip factor of a radial bladed centrifugal compressor. ASME J. Eng. Power 87(2), 181–188 (1965)

    Article  Google Scholar 

  43. Meakhail, T.; Park, S.O.: An improved theory for regenerative pump performance. Proc. Inst. Mech. Eng. A 219, 213–222 (2005)

    Article  Google Scholar 

  44. Balje, O.E.: Loss and flow path studies on centrifugal compressor-part I. ASME J. Eng. Power 92(3), 275–286 (1970)

    Article  Google Scholar 

  45. White, F.M.: Fluid Mechanics, 7th edn. McGraw-Hill, Boston (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenguang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Zhang, Y. The Vortex Pump Under Highly Viscous Liquid Flow Conditions. Arab J Sci Eng 43, 4739–4761 (2018). https://doi.org/10.1007/s13369-018-3112-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3112-7

Keywords

Navigation