Skip to main content
Log in

Preview Tracking Control for a Class of Differentiable Nonlinear Systems

  • Research Article - Systems Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper investigates the problem of preview tracking control for a class of differentiable nonlinear systems. First, by constructing an augmented error system (AES), the tracking problem is transformed into a regulation problem. Thanks to the differentiable mean value theorem, the obtained AES is a linear parameter varying system. Then, a state feedback controller is developed and a sufficient condition for asymptotic stability of the closed-loop system is presented in the LMI form. Based on this criterion, the preview controller of the original system is designed to guarantee that the output asymptotically tracks a reference signal. Finally, the effectiveness of the proposed controller is shown by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sheridan, T.B.: Three models of preview control. IEEE Trans. Hum. Factors Electron. 7(2), 91–102 (1966)

    Article  Google Scholar 

  2. Bender, E.K.: Optimum linear preview control with application to vehicle suspension. J. Basic Eng. 90(2), 213–221 (1968)

    Article  Google Scholar 

  3. Tomizuka, M.: Optimal continuous finite preview problem. IEEE Trans. Autom. Control 20(3), 362–365 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Tomizuka, M.; Whitney, D.E.: Optimal discrete finite preview problems (Why and how is future information important?). ASME J. Dyn. Syst. Meas. Control 97(4), 319–325 (1975)

    Article  Google Scholar 

  5. Katayama, T.; Ohki, T.; Inoue, T.; Kato, T.: Design of an optimal controller for a discrete-time system subject to previewable demand. Int. J. Control 41(3), 677–699 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Katayama, T.; Hirono, T.: Design of an optimal servomechanism with preview action and its dual problem. Int. J. Control 45(2), 407–420 (1987)

    Article  MATH  Google Scholar 

  7. Liao, F.; Xu, Y.: Design of an optimal preview controller for time-varying discrete-time systems with state time-delay. J. Univ. Sci. Technol. Beijing 34(2), 211–216 (2012)

    MATH  Google Scholar 

  8. Xu, Y.; Liao, F.; Cui, L.; Wu, J.: Preview control for a class of linear continuous time-varying systems. Int. J. Wavelets Multiresolut. Inf. Process. 11(2), 1–14 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liao, F.; Ren, Z.; Tomizuka, M.; Wu, J.: Preview control for impulse-free continuous-time descriptor systems. Int. J. Control 88(6), 1142–1149 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao, M.; Liao, F.: Design of an optimal preview controller for linear discrete-time descriptor systems with state delay. Int. J. Syst. Sci. 46(5), 932–943 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wu, J.; Liao, F.; Tomizuka, M.: Optimal preview control for a linear continuous-time stochastic control system in finite-time horizon. Int. J. Syst. Sci. 48(1), 129–137 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wu, J.; Liao, F.; Deng, J.: Optimal preview control for a class of linear continuous stochastic control systems in the infinite horizon. Math. Probl. Eng. Article ID 7679165 (2016)

  13. Zemouche, A.; Boutayeb, M.; Bara, G.I.: Observers for a class of Lipschitz systems with extension to \({H}_{\infty }\) performance analysis. Syst. Control Lett. 57(1), 18–27 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Thabet, A.; Frej, G.B.H.; Boutayeb, M.: Observer-based feedback stabilization for Lipschitz nonlinear systems with extension to \(\text{ H }_{\infty }\) performance analysis: design and experimental results. IEEE Trans. Control Syst. Technol. (2017). https://doi.org/10.1109/TCST.2017.2669143

    Google Scholar 

  15. Yadegar, M.; Afshar, A.; Davoodi, M.: Observer-based tracking controller design for a class of Lipschitz nonlinear systems. J. Vib. Control (2017). https://doi.org/10.1177/1077546317721597

    Google Scholar 

  16. Miah, M.S.; Gueaieb, W.: Optimal time-varying P-controller for a class of uncertain nonlinear systems. Int. J. Control Autom. Syst. 12(4), 722–732 (2014)

    Article  Google Scholar 

  17. Wang, Z.; Gao, F.: Adaptive output trajectory tracking control for a class of affine nonlinear discrete-time systems. IEEE Trans. Syst. Man Cybern. Syst. 46(3), 326–333 (2016)

    Article  MathSciNet  Google Scholar 

  18. Zhai, J.; Wang, B.; Fei, S.: Tracking control for switched nonlinear systems with multiple time-varying delays. Nonlinear Anal. Hybrid Syst. 17, 44–55 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, Z.; Lu, R.; Wang, H.: Finite-time trajectory tracking control of a class of nonlinear discrete-time systems. IEEE Trans. Syst. Man Cybern. Syst. 99, 1–9 (2017)

    Google Scholar 

  20. Mary, A.H.; Kara, T.: Robust proportional control for trajectory tracking of a nonlinear robotic manipulator: LMI optimization approach. Arab. J. Sci. Eng. 41(12), 5027–5036 (2016)

    Article  Google Scholar 

  21. Phanomchoeng, G.; Rajamani, R.; Piyabongkarn, D.: Nonlinear observer for bounded Jacobian systems with applications to automotive slip angle estimation. IEEE Trans. Autom. Control 56(5), 1163–1170 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Boulkroune, B.; Djemili, I.; Aitouche, A.; Cocquempot, V.: Robust nonlinear observer design for actuator fault detection in diesel engines. Int. J. Appl. Math. Comput. Sci. 23(3), 557–569 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, Y.; Rajamani, R.; Bevly, D.M.: Observer design for parameter varying differentiable nonlinear systems, with application to slip angle estimation. IEEE Trans. Autom. Control 62(4), 1940–1945 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tsuchiya, T.; Egami, T.: Digital Preview and Predictive Control (Translated by Fucheng Liao). Beijing Science and Technology Press, Beijing (1994)

    Google Scholar 

  25. Peaucelle, D.; Ebihara, Y.: Robust stability analysis of discrete-time systems with parametric and switching uncertainties. In: Proceedings of the 19th World Congress of the International Federation of Automatic Control (IFAC), pp. 724–729 (2014)

  26. Yu, L.: Robust Control: Linear Matrix Inequality Method. Tsinghua University Press, Beijing (2002)

    Google Scholar 

  27. Ortega, J.M.; Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  28. Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  29. Vamvoudakis, K.G.; Mojoodi, A.; Ferraz, H.: Event-triggered optimal tracking control of nonlinear systems. Int. J. Robust Nonlinear Control 27(4), 598–619 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 61174209) and the Oriented Award Foundation for Science and Technological Innovation, Inner Mongolia Autonomous Region, China (No. 2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fucheng Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Liao, F. & Deng, J. Preview Tracking Control for a Class of Differentiable Nonlinear Systems. Arab J Sci Eng 43, 3259–3268 (2018). https://doi.org/10.1007/s13369-017-3040-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-3040-y

Keywords

Navigation