Skip to main content
Log in

Efficient Handover in LTE-A by Using Mobility Pattern History and User Trajectory Prediction

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The handover is one of the basic elements in the mobility management of Long Term Evolution Advanced (LTE-A) wireless systems. It permits the user equipment (UE) to wander between LTE-A wireless networks. LTE-A purely depends on the hard handover, which may cause disconnection to occur if the handover is not fast enough. In this paper, an advanced handover technique is proposed, which consolidates the present UE moving direction and its history information. The proposed technique tracks the UE positions to determine its direction. When the UE is close to the handover spot, the UE begins to look into its history, so as to select the target cell. In the event that the UE trajectory does not exist in the history or the load of target cell is full, the UE and its serving cell will begin looking for a target cell through the use of a cosine function and distance in order to select the target cell. Through the direct selection of the evolved NodeB target in the handover, the performance of the network transmission is seen to improve. The proposed algorithm is evaluated and then compared with the 3GPP standard handover and existing work depending on handover number, number of signaling measurements, packet delay ratio, packet loss ratio, and throughput. The simulation with LTE-Sim proves that the proposed algorithm significantly reduced the number of handovers, the signaling measurements number, the packet delay ratio, and the packet loss ratio and increased the throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 3GPP: LTE; Evolved Universal T l Terrestrial Radio Access (E-UTRA); Physical c l channels and modulation (Release 12). In: 3rd Gener. Partnersh. Proj. TS 1 136 211, vol. 12.5.0, pp. 0–292 (2015).

  2. Han, D.; Shin, S.; Cho, H.; Chung, J.; Ok, D.; Hwang, I.: Measurement and stochastic modeling of handover delay and interruption time of smartphone real-time applications on LTE networks. IEEE Commun. Mag. 53(3), 173–181 (2015)

    Article  Google Scholar 

  3. Chen, J.; Yang, C.; Mai, Y.: A novel smart forwarding scheme in LTE-advanced networks. China Commun. 12(3), 120–131 (2015)

    Article  Google Scholar 

  4. 3GPP: Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 10). In: 3rd Gener. Partnersh. Proj. TS 136 211, vol. 10.1.0, pp. 0–105 (2011)

  5. 3GPP: Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 8). In: 3rd Gener. Partnersh. Proj. TS 136 211, vol. 8.4.0, pp. 0–87 (2008)

  6. Tran, T.-T.; Shin, Y.; Shin, O.-S.: Overview of enabling technologies for 3GPP LTE-advanced. EURASIP J. Wirel. Commun. Netw. 2012(1), 54 (2012)

    Article  Google Scholar 

  7. Akyildiz, I.F.; Gutierrez-Estevez, D.M.; Reyes, E.C.: The evolution to 4G cellular systems: LTE-advanced. Phys. Commun. 3(4), 217–244 (2010)

    Article  Google Scholar 

  8. Volkan, Y.; Ulas, K.; Oguz, S.: A new control plane for 5G network architecture with a case study on unified handoff, mobility, and routing management. IEEE Commun. Mag. 52(11), 76–85 (2014)

    Article  Google Scholar 

  9. Miyim, A.M.; Ismail, M.; Nordin, R.: Vertical handover solutions over LTE-advanced wireless networks: an overview. Wirel. Pers. Commun. 77(4), 3051–3079 (2014)

    Article  Google Scholar 

  10. Edward, E.P.: A novel seamless handover scheme for WiMAX/LTE heterogeneous networks. Arab. J. Sci. Eng. 41(3), 1129–1143 (2015)

    Article  Google Scholar 

  11. Márquez-Barja, J.; Calafate, C.T.; Cano, J.C.; Manzoni, P.: An overview of vertical handover techniques: algorithms, protocols and tools. Comput. Commun. 34(8), 985–997 (2011)

    Article  Google Scholar 

  12. Zhou, Y.; Ai, B.: Handover schemes and algorithms of high-speed mobile environment: a survey. Comput. Commun. 47(April), 1–15 (2014)

    Article  Google Scholar 

  13. Chen, X.; Kim, K.; Lee, B.; Youn, H.: DIHAT: differential integrator handover algorithm with TTT window for LTE-based systems. EURASIP J. Wirel. Commun. Netw. 2014(1), 162 (2014)

    Article  Google Scholar 

  14. Yang, F.; Deng, H.; Jiang, F.; Deng, X.: Handover optimization algorithm in LTE high-speed railway environment. Wirel. Pers. Commun. 84(2), 1577–1589 (2015)

    Article  Google Scholar 

  15. Ge, H.; Wen, X.; Zheng, W.; Lu, Z.; Wang, B.: A history-based handover prediction for LTE systems. In: Proc. - 1st Int. Symp. Comput. Netw. Multimed. Technol. CNMT 2009, pp. 1–4 (2009)

  16. Wang, Y.H.; Huang, G.R.; Tung, Y.C.: A handover prediction mechanism based on LTE-A UE history information. In: 2014 Int. Conf. Comput. Inf. Telecommun. Syst. CITS 2014 (2014)

  17. Chen, X.; Kim, M.J.; Yoo, S.H.; Park, N.Y.; Youn, H.Y.: Efficient and prompt handover in LTE-based systems by predicting the target eNodeBs. In: 2014 Int. Conf. Cyber-Enabled Distrib. Comput. Knowl. Discov., pp 406–413 (2014)

  18. Chang, F.-M.; Wang, H.-L.; Hu, S.-Y.; Kao, S.-J.: An efficient handover mechanism by adopting direction prediction and adaptive time-to-trigger in LTE networks. In: Computational Science and Its Applications - Iccsa 2013 Pt V vol. 7975, pp. 270–280 (2013)

  19. Ahmad, R.; Sundararajan, E.A.; Othman, N.E.; Ismail, M.: Handover in LTE-advanced wireless networks: state of art and survey of decision algorithm. Telecommun. Syst. 66(3), 533–558 (2017)

    Article  Google Scholar 

  20. Ulvan, A.; Bestak, R.; Ulvan, M.: Handover procedure and decision strategy in LTE-based femtocell network. Telecommun. Syst. 52(4), 2733–2748 (2011)

    Article  Google Scholar 

  21. Gódor, G.; Jakó, Z.; Knapp, Á.; Imre, S.: A survey of handover management in LTE-based multi-tier femtocell networks: requirements, challenges and solutions. Comput. Netw. 76(November), 17–41 (2015)

    Article  Google Scholar 

  22. 3GPP: Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 11). In: 3rd Gener. Partnersh. Proj. TS 136 300, vol. 11.5.0, pp. 1–223 (2013)

  23. Tao, M.; Yuan, H.; Hong, X.; Zhang, J.: SmartHO: mobility pattern recognition assisted intelligent handoff in wireless overlay networks. Soft. Comput. 20(10), 4121–4130 (2016)

    Article  Google Scholar 

  24. Wanalertlak, W.; Lee, B.; Yu, C.; Kim, M.; Park, S.M.; Kim, W.T.: Behavior-based mobility prediction for seamless handoffs in mobile wireless networks. Wirel. Netw. 17(3), 645–658 (2011)

    Article  Google Scholar 

  25. Fei, M.; Fan, P.: Position-assisted fast handover schemes for LTE-advanced network under high mobility scenarios. J. Mod. Transp. 20(4), 268–273 (2012)

    Article  Google Scholar 

  26. Rajabizadeh, M.; Abouei, J.: An efficient femtocell-to-femtocell handover decision algorithm in LTE femtocell networks. In: ICEE 2015—Proc. 23rd Iran. Conf. Electr. Eng. vol. 10, pp. 213–218 (2015)

  27. Regin Bose, K.; Sankaranarayanan, V.: GPS based location prediction and authentication during inter-MSC handover. Appl. Mech. Mater. 602–605, 2326–2329 (2014)

    Article  Google Scholar 

  28. Chatterjee, S.; Sarddar, D.; Saha, J.; Banerjee, S.; Mondal, A.: Naskar, M. K.: An improved mobility management technique for IEEE 802.11 based WLAN by predicting the direction of the mobile node. IN: 2012 Natl. Conf. Comput. Commun. Syst. NCCCS 2012—Proceeding, pp. 242–246 (2012)

  29. Wang, H.-L.; Kao, S.-J.; Hsiao, C.-Y.; Chang, F.-M.: A moving direction prediction-assisted handover scheme in LTE networks. EURASIP J. Wirel. Commun. Netw. 2014(1), 190 (2014)

    Article  Google Scholar 

  30. Lu, X.; et al.: Directional communication with movement prediction in mobile wireless sensor networks. Pers. Ubiquitous Comput. 18(8), 1941–1953 (2014)

    Article  Google Scholar 

  31. Ben-Mubarak, M.A.; Ali, B.M.; Noordin, N.K.; Ismail, A.; Ng, C.K.: Mobile station movement direction prediction (MMDP) based handover scanning for mobile WiMAX system. Wirel. Pers. Commun. 73(3), 839–865 (2013)

    Article  Google Scholar 

  32. Piro, G.; Grieco, L.A.; Boggia, G.; Capozzi, F.; Camarda, P.: Simulating LTE cellular systems: an open source framework. IEEE Trans. Veh. Technol. 60(2), 498–513 (2011)

    Article  Google Scholar 

  33. 3GPP: Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) system scenarios (Release 13). In: 3rd Gener. Partnersh. Proj. TR 36 942, vol. 13.0.0, pp. 0–84 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, R., Sundararajan, E.A., Othman, N.E. et al. Efficient Handover in LTE-A by Using Mobility Pattern History and User Trajectory Prediction. Arab J Sci Eng 43, 2995–3009 (2018). https://doi.org/10.1007/s13369-017-3037-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-3037-6

Keywords

Navigation