Skip to main content
Log in

Fixed-Wing UAV Attitude and Altitude Control via Adaptive Second-Order Sliding Mode

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper proposes an advanced control approach applied to a fixed-wing Unmanned Aerial Vehicle (UAV) to ensure the stabilization of its angular and vertical positions (attitude and altitude). Actually, the UAV is represented by a dynamic model and is controlled by a robust control law which is the adaptive super-twisting algorithm. This controller based on a second-order sliding mode (SOSM) control is justified by the fact that the fixed-wing UAV has a complex nonlinear, strongly coupled model and undergoes external disturbances. The proposed approach overcomes these problems and ensures finite time convergence. It should be noted that gain adaptation reduces chatter. The performance and effectiveness of the proposed controller are tested by simulations in trajectory tracking mode and compared to classical sliding and classical super-twisting controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ronaldo, S.; Lúcio, C.; Nascimento, S.; Bittar,A.; Franco, N.M.: Experimental framework for evaluation of guidance and control algorithms for uavs. 21st Brazilian Congress of Mechanical Engineering, Brazil (2011)

  2. Oner, K.E.; Cetinsoy, E.; Sirimoglu, E.: Mathematical modeling and vertical flight control of a tilt-wing UAV. Turk. J. Electr. Eng. Comput. Sci. 20(1), 149–157 (2012)

    Google Scholar 

  3. No, T.S.; Min, B.M.; Stone, R.H.; Wong, K.C.: Control and simulation of arbitrary flight trajectory-tracking. Control Eng. Pract. 13(5), 601–612 (2005)

    Article  Google Scholar 

  4. Wang, Q.; Stengel, R.: Robust nonlinear flight control of a high-performance aircraft. IEEE Trans. Control Syst. Technol. 13(1), 15–26 (2005)

    Article  Google Scholar 

  5. Kang, Y.; Hedrick, J.K.: Linear tracking for a fixed-wing UAV using nonlinear model predictive control. IEEE Trans. Control Syst. Technol. 17(5), 1202–1210 (2009)

    Article  Google Scholar 

  6. MacKunis, W.; Wilcox, Z.D.; Kaiser, M.K.; Dixon, W.E.: Global adaptive output feedback tracking control of an Unmanned Aerial Vehicle. IEEE Trans. Control Syst. Technol. 18(6), 1390–1397 (2010)

    Article  Google Scholar 

  7. Yang, W.; Hammoudi, M.N.; Herrmann, G.; Lowenberg, M.; Chen, X.: Two-state dynamic gain scheduling control applied to an F16 aircraft model. Int. J. Non-Linear Mech. 47(10), 1116–1123 (2012)

    Article  Google Scholar 

  8. Xiaofeng, L.; Jing, S.; Yiwen, Q.; Ye, Y.: Design for aircraft engine multi-objective controllers with switching characteristics. Chin. J. Aeronaut. 27(5), 1097–1110 (2014)

    Article  Google Scholar 

  9. Bu, X.; Wu, X.; Ma, Z.; Zhang, R.: Nonsingular direct neural control of air-breathing hypersonic vehicle via back-stepping. Neurocomputing 153, 164–173 (2015)

    Article  Google Scholar 

  10. Orra, J.; Shtessel, Y.: Lunar spacecraft powered descent controlusing higher-order sliding mode techniques. J. Frankl. Inst. 349(2), 476–492 (2012)

    Article  Google Scholar 

  11. Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58(6), 1247–1263 (1993)

    Article  MathSciNet  Google Scholar 

  12. Wang, J.; Zong, Q.; Su, R.; Tian, B.: Continuous highorderslidingmodecontrollerdesignfora flexible air-breathinghypersonicvehicle. ISA Trans. 53(3), 690–698 (2014)

    Article  Google Scholar 

  13. Yamasaki, T.; BalakrishnanS, N.; Takano, H.: Integrated guidance and autopilot design for a chasing UAV via high order sliding modes. J. Frankl. Inst. 349(2), 531–558 (2012)

    Article  MathSciNet  Google Scholar 

  14. Zong, Q.; Wang, J.; Tian, B.; Tao, Y.: Quasi-continuous high-order sliding mode controller and observer design for flexible hypersonic vehicle. Aerosp. Sci. Technol. 27(1), 127–137 (2013)

    Article  Google Scholar 

  15. Levant, A.; Pridor, A.: Aircraft pitch control via second-order sliding technique. J. Guid. Control Dyn. 23(4), 586–594 (2000)

    Article  Google Scholar 

  16. Ali, S.U.; Samar, R.; Shah, M.Z.; Bhatti, A.I.; Munawar, K.; Al-Sggaf, U.M.: Lateral guidance and control of UAVs using second-order sliding modes. Aerosp. Sci. Technol. 49, 88–100 (2016)

    Article  Google Scholar 

  17. Bartolini, G.; Pisano, A.; Punta, E.; Usai, E.: A survey of applications of second-order sliding mode control to mechanical systems. Int. J. Control 76(9–10), 875–892 (2003)

    Article  MathSciNet  Google Scholar 

  18. Kochalummoottil, J.; Shtessel, Y.B.; Moreno, J.A.; Fridman, L.: Output feedback adaptive twisting control: a Lyapunov design. In: American Control Conference (ACC), IEEE, pp. 6172–6177 (2012)

  19. Rivera, J.; OJuan, J.R.; Mora, C.; Garcia, L.; Ortega, S.: Super-twisting sliding mode in motion control systems. Intech Open Access Publisher (2011)

  20. Moreno J.; Osorio, M.: A Lyapunov approach to second-order sliding mode controllers and observers. In: 47th IEEE Conference on Decision and Control, Mexico, pp. 2856–286 (2008)

  21. Moreno, J.; Osorio, M.: Strict Lyapunov functions for the super-twisting algorithm. IEEE Trans. Autom. Control 57(4), 1035–1040 (2012)

    Article  MathSciNet  Google Scholar 

  22. Shtessel, Y.; Moreno, J.; Plestan, F.; Fridman, L.; Poznyak, A.: Super-Twisting Adaptive Sliding Mode Control: A Lyapunov Design, pp. 5109–5113. CDC, Atlanta (2010)

    Google Scholar 

  23. Shtessel, Y.; Taleb, M.; Plestan, F.: A novel adaptive-gain supertwisting sliding mode controller: methodology and application. Automatica 48(5), 759–769 (2012)

    Article  MathSciNet  Google Scholar 

  24. Evangelista, C.; Puleston, P.; Valenciaga, F.; Fridman, L.: Lyapunov-designed super-twisting sliding mode control for wind energy conversion optimization. IEEE Trans. Ind. Electron. 60(2), 538–545 (2013)

    Article  Google Scholar 

  25. Castañeda, H.; Salas-Peña, O.; Morales, J.L. : Adaptive super twisting flight control-observer for a fixed wing UAV. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1004–1013 (2013)

  26. Paw, Y.C.; Balas, G.J.: Development and application of an integrated framework for small UAV flight control development. Mechatronics 21(5), 789–802 (2011)

    Article  Google Scholar 

  27. Paw, Y.: Synthesis and Validation of Flight Control for UAV. Ph.D. Dissertation, University of Minnesota (2009)

  28. Stevens, B.; Lewis, F.; Johnson, E.: Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems. Wiley, London (2015)

    Book  Google Scholar 

  29. Boiffier, J.: The Dynamic of Flight : The Equations. Wiley, London (1998)

    Google Scholar 

  30. Fossen, T.: Mathematical Models for Control of Aircraft and Satellites. Department of Engineering Cybernetics Norwegian University of Science and Technology, Trondheim (2013)

    Google Scholar 

  31. Noth, A.; Bouabdallah, S.; Siegwart, R.: Dynamic Modeling of Fixed-Wing UAVs. Autonomous System Laboratory Report, ETH, Zurich (2006)

  32. Belhocine, M.; Hamerlain, M.; Bouyoucef, K.: Robot control using a sliding mode. In: Proceedings of the 1997 IEEE International Symposium on Intelligent Control, pp. 361–366 (1997)

  33. Hamerlain, M.; Tondu, B.; Mira, C.; Lopez, P.: Variable structure model reference control for an actuator with artificial antagonist muscles. IEEE Workshop, (VARSCON’91), Nevada, pp. 73–79 (1991)

  34. Chettouh, M.; Toumi, R.; Hamerlain, M.: Chatter reduction in an artificial muscles robot application. Int. J. Robot. Autom. 23(2), 88–97 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lamia Melkou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melkou, L., Hamerlain, M. & Rezoug, A. Fixed-Wing UAV Attitude and Altitude Control via Adaptive Second-Order Sliding Mode. Arab J Sci Eng 43, 6837–6848 (2018). https://doi.org/10.1007/s13369-017-2881-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2881-8

Keywords

Navigation