Skip to main content
Log in

Subsampling-Based Blind Image Forgery Detection Using Support Vector Machine and Artificial Neural Network Classifiers

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In order to create convincing doctored images, forged images are exposed to some linear transformations (like rotation and resizing) which involve a resampling step. In copy–paste image forgery, the pasted portion is rescaled in order to hide traces of malicious tampering. In this paper, an algorithm is proposed to detect the global resizing operation of the doctored image blindly based on features extracted using subsampling. Fisher criterion is employed in order to choose the relevant features and reduce the dimensionality of the statistical features. Support vector machine (SVM) and multi-layer feedforward artificial neural network (ANN) are used for classification. Experimental results using \(C_b\), \(C_r\) and grayscale images demonstrate that the proposed method has good rescaling detection performance even when dealing with distortions like JPEG compression. The results indicate that SVM performs better compared to ANN classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Redi, J.A.; Taktak, W.; Dugelay, J.: Digital image forensics: a booklet for beginners. Multimed. Tools Appl. 51(1), 133–162 (2011)

    Article  Google Scholar 

  2. Mahdian, B.; Saic, S.: A bibliography on blind methods for identifying image forgery. Signal Process. Image Commun. 25(6), 389–399 (2010)

    Article  Google Scholar 

  3. Qureshi, M.; Deriche, M.: A bibliography of pixel-based blind image forgery detection techniques. Signal Process. Image Commun. 39(A), 46–74 (2015)

    Article  Google Scholar 

  4. Birajdar, G.; Mankar, V.: Digital image forgery detection using passive techniques: a survey. Digit. Investig. 10(3), 226–245 (2013)

    Article  Google Scholar 

  5. Yang, F.; Li, J.; Lu, W.; Weng, J.: Copy-move forgery detection based on hybrid features. Eng. Appl. Artif. Intell. 59, 73–83 (2017)

    Article  Google Scholar 

  6. Pun, C.-M.; Yuan, X.-C.; Bi, X.-L.: Image forgery detection using adaptive oversegmentation and feature point matching. IEEE Trans. Inf. Forensic Secur. 10(8), 1705–1716 (2015)

    Article  Google Scholar 

  7. Cozzolino, D.; Poggi, G.; Verdoliva, L.: Efficient dense-field copy move forgery detection. IEEE Trans. Inf. Forensic Secur. 10(11), 2284–2297 (2015)

    Article  Google Scholar 

  8. Zhao, X.; Wang, S.; Li, S.; Li, J.: Passive image-splicing detection by a 2-D noncausal Markov model. IEEE Trans. Circuits Syst. Video Technol. 25(2), 185–199 (2015)

    Article  Google Scholar 

  9. El-Alfy, E.-S.M.; Qureshi, M.A.: Combining spatial and DCT based Markov features for enhanced blind detection of image splicing. Pattern Anal. Appl. 18(3), 713–723 (2015)

    Article  MathSciNet  Google Scholar 

  10. Wei, W.; Wang, S.; Zhang, X.; Tang, Z.: Estimation of image rotation angle using interpolation-related spectral signatures with application to blind detection of image forgery. IEEE Trans. Inf. Forensics Secur. 5(3), 507–517 (2010)

    Article  Google Scholar 

  11. Feng, X.; Cox, I.J.; Doerr, G.: Normalized energy density based forensic detection of resampled images. IEEE Trans. Inf. Forensics Secur. 14(3), 536–545 (2012)

    Google Scholar 

  12. Mahdian, B.; Saic, S.: Blind authentication using periodic properties of interpolation. IEEE Trans. Inf. Forensics Secur. 3(3), 529–538 (2008)

    Article  Google Scholar 

  13. Gallagher, A.C.: Detection of linear and cubic interpolation in JPEG compressed images. In: 2nd Canadian Conference on Computer and Robot Vision (CRV’05), pp. 65–72 (2005)

  14. Popescu, A.; Farid, H.: Exposing digital forgeries by detecting traces of re-sampling. IEEE Trans. Signal Process. 53(2), 758–767 (2005)

    Article  MATH  Google Scholar 

  15. Bayram, S.; Avcibas, I.; Sankur, B.; Memon, N.: Image manipulation detection. J. Electron. Imaging 15(4), 1–17 (2006)

    Article  Google Scholar 

  16. Prasad, S.; Ramakrishnan, K.R.: On resampling detection and its application to image tampering. In: Proceedings of the IEEE International Conference on Multimedia and Exposition, pp. 1325–1328 (2006)

  17. Birajdar, G.; Mankar, V.: Blind method for rescaling detection and rescale factor estimation in digital images using periodic properties of interpolation. AEU Int. J. Electron. Commun. 68(7), 644–652 (2014)

    Article  Google Scholar 

  18. Gul, G.; Avcibas, I.; Kurugollu, F.: SVD based image manipulation detection. In: International Conference on Image Processing (ICIP), pp. 1765–1768 (2010)

  19. Wang, R.; Ping, X.: Detection of resampling based on singular value decomposition. In: Proceedings of Fifth International Conference on Image and Graphics, pp. 879–884 (2009)

  20. Wei, L.; Hongtao, L.: Robust watermarking based on subsampling and nonnegative matrix factorization. Informatica 19(4), 555–566 (2008)

    MATH  Google Scholar 

  21. Luo, H.; Yu, F.-X.; Huang, Z.-L.; Lu, Z.-M.: Blind image watermarking based on discrete fractional random transform and subsampling. Optik 122(4), 311–316 (2011)

  22. Wei, L.; Wei, S.; Hongtao, L.: Novel robust image watermarking based on subsampling and DWT. Multimed. Tools Appl. 60(1), 31–46 (2012)

  23. Wai, C.: DCT-based Image watermarking using subsampling. IEEE Trans. Multimed. 5(1), 34–38 (2003)

    Article  MathSciNet  Google Scholar 

  24. Pan, J.-S.; Li, W.; Yang, C.-S.; Yan, L.-J.: Image steganography based on subsampling and compressive sensing. Multimed. Tools Appl. (2014). doi:10.1007/s11042-014-2076-1

    Google Scholar 

  25. Joo, J.C.; Oh, T.W.; Choi, J.H.; Lee, H.K.: Steganalysis scheme using the difference image of calibrated subsampling. In: Proceedings of International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 51–54 (2010)

  26. Luukka, P.: Feature selection using fuzzy entropy measures with similarity classifier. Expert Syst. Appl. 38(4), 4600–4607 (2011)

    Article  Google Scholar 

  27. Staroszczyk, T.; Osowski, S.; Markiewicz, T.: Comparative analysis of feature selection methods for blood cell recognition in Leukemia. Mach. Learn. Data Min. Pattern Recogni. LNCS 7376, 467–481 (2012)

    Article  Google Scholar 

  28. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  29. Noble, W.: What is a support vector machine? Nat. Biotechnol. 24(12), 1565–1567 (2006)

    Article  Google Scholar 

  30. Haykin, S.: Neural Networks: A Comprehensive Foundation, 3rd edn. Pearson Prentice-Hall, Upper Saddle River (2008)

    MATH  Google Scholar 

  31. Nurettin, A.: A support vector machine classifier algorithm based on a perturbation method and its application to ECG beat recognition systems. Expert Syst. Appl. 31(1), 150–158 (2006)

    Article  Google Scholar 

  32. Egmont-Petersen, M.; Ridder, D.; Handels, D.: Image processing with neural networks—a review. Pattern Recognit. 35(10), 2279–2301 (2002)

    Article  MATH  Google Scholar 

  33. Gopi, E.: Digital image forgery detection using artificial neural network and independent component analysis. Appl. Math. Comput. 194(2), 540–543 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Huang, Y.; Fan, N.: Learning from interpolated images using neural networks for digital forensics. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 177–182 (2010)

  35. Hagan, M.; Demuth, H.; Beale, M.: Neural Network Design, 1st edn. PWS Publishing Co, Boston (1996)

    Google Scholar 

  36. Schaefer, G.; Stich, M.: UCID—an uncompressed colour image database. In: Proceedings of SPIE, Storage and retrieval Methods and Applications for Multimedia, pp. 472–480 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gajanan K. Birajdar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birajdar, G.K., Mankar, V.H. Subsampling-Based Blind Image Forgery Detection Using Support Vector Machine and Artificial Neural Network Classifiers. Arab J Sci Eng 43, 555–568 (2018). https://doi.org/10.1007/s13369-017-2671-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2671-3

Keywords

Navigation