Skip to main content
Log in

Modeling the Retention of Organic Compounds by Nanofiltration and Reverse Osmosis Membranes Using Bootstrap Aggregated Neural Networks

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The purpose of the current work was to investigate the use of bootstrap aggregated neural networks (BANN) in modeling the rejection processes of charged and uncharged organic compounds by nanofiltration and reverse osmosis membranes. A total database of 436 rejections of 42 charged and uncharged organic compounds collected from the literature was used to build the BANN model. The training dataset (350 data points) is re-sampled using a bootstrap technique to form different training datasets. For each training set, an INN model is constructed, validated, and tested. The predicted outputs obtained from the developed INN models are then combined together by simple averaging. Good agreement between the predicted and experimental rejections for the BANN model was obtained (the correlation coefficient for the test dataset was 0.9862). The comparison between the BANN, single neural network (SNN), and bootstrap aggregated multiple linear regressions (BAMLR) revealed the superiority of the BANN model (the root mean squared errors for the test dataset were 5.3315 for the BANN, 6.4587 for the SNN, and 18.7834 for the BAMLR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Doederer, K.; Farré, M.J.; Pidou, M.; Weinberg, H.S.; Gernjak, W.: Rejection of disinfection by-products by RO and NF membranes: influence of solute properties and operational parameters. J. Membr. Sci. 467, 195–205 (2014)

    Article  Google Scholar 

  2. Van der Bruggen, B.; Vandecasteele, C.: Modelling of the retention of uncharged molecules with nanofiltration. Water Res. 36(5), 1360–1368 (2002)

    Article  Google Scholar 

  3. Mahlangu, T.O.; Hoek, E.M.V.; Mamba, B.B.; Verliefde, A.R.D.: Influence of organic, colloidal and combined fouling on NF rejection of NaCl and carbamazepine: Role of solute-foulant-membrane interactions and cake-enhanced concentration polarisation. J. Membr. Sci. 471, 35–46 (2014)

    Article  Google Scholar 

  4. Lin, J.; Ye, W.; Zeng, H.; Yang, H.; Shen, J.; Darvishmanesh, S.; Luis, P.; Sotto, A.; Van der Bruggen, B.: Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes. J. Membr. Sci. 477, 183–193 (2015)

    Article  Google Scholar 

  5. Lin, J.; Tang, C.Y.; Ye, W.; Sun, S.-P.; Hamdan, S.H.; Volodin, A.; Haesendonck, C.V.; Sotto, A.; Luis, P.; Van der Bruggen, B.: Unraveling flux behavior of superhydrophilic loose nanofiltration membranes during textile wastewater treatment. J. Membr. Sci. 493, 690–702 (2015)

    Article  Google Scholar 

  6. Bolong, N.; Ismail, A.F.; Salim, M.R.; Matsuura, T.: A review of the effects of emerging contaminants in wastewater and optional for their removal. Desalination 239, 229–246 (2009)

    Article  Google Scholar 

  7. Dolar, D.; Ignjatic Zokic, T.; Kosutic, K.; Asperger, D.; Mutavdzic Pavlovic, D.: RO/NF membrane treatment of veterinary pharmaceutical wastewater: comparison of results obtained on a laboratory and a pilot scale. Environ. Sci. Pollut. Res. Int. 19(4), 1033–1042 (2012)

    Article  Google Scholar 

  8. Madsen, H.T.; Bajraktari, N.; Hélix-Nielsen, C.; Van der Bruggen, B.; Søgaard, E.G.: Use of biomimetic forward osmosis membrane for trace organics removal. J. Membr. Sci. 476, 469–474 (2015)

    Article  Google Scholar 

  9. Lin, J.; Ye, W.; Baltaru, M.-C.; Tang, Y.P.; Bernstein, N.J.; Gao, P.; Balta, S.; Vlad, M.; Volodin, A.; Sotto, A.; Luis, P.; Zydney, A.L.; Van der Bruggen, B.: Tight ultrafiltration membranes for enhanced separation of dyes and Na2SO4 during textile wastewater treatment. J. Membr. Sci. 514, 217–228 (2016)

    Article  Google Scholar 

  10. Yangali-Quintanilla, V.; Sadmani, A.; McConville, M.; Kennedy, M.; Amy, G.: A QSAR model for predicting rejection of emerging contaminants (pharmaceuticals, endocrine disruptors) by nanofiltration membranes. Water Res. 44(2), 373–384 (2010)

    Article  Google Scholar 

  11. Drewes, J.E.; Amy, G.; Kim, T.-U.; Xu, P.; Bellona, C.; Oedekoven, M.; Macalady, D.: Rejection of Wastewater-Derived Micropollutants in High-Pressure Membrane Applications Leading to Indirect Potable Reuse Effect of Membranes and Micropollutant Properties. WateReuse, Alexandria, VA (2006)

    Google Scholar 

  12. Verliefde, A.R.; Heijman, S.G.; Cornelissen, E.R.; Amy, G.; Van der Bruggen, B.; van Dijk, J.C.: Influence of electrostatic interactions on the rejection with NF and assessment of the removal efficiency during NF/GAC treatment of pharmaceutically active compounds in surface water. Water Res. 41(15), 3227–3240 (2007)

    Article  Google Scholar 

  13. Bellona, C.; Drewes, J.E.; Xu, P.; Amy, G.: Factors affecting the rejection of organic solutes during NF/RO treatment—a literature review. Water Res. 38(12), 2795–2809 (2004)

    Article  Google Scholar 

  14. Heijman, S.G.J.; Verliefde, A.R.D.; Cornelissen, E.R.; Amy, G.; van Dijk, J.C.: Influence of natural organic matter (NOM) fouling on the removal of pharmaceuticals by nanofiltration and activated carbon filtration. Water Sci. Technol. 7(4), 17–24 (2007)

    Google Scholar 

  15. Gur-Reznik, S.; Koren-Menashe, I.; Heller-Grossman, L.; Rufel, O.; Dosoretz, C.G.: Influence of seasonal and operating conditions on the rejection of pharmaceutical active compounds by RO and NF membranes. Desalination 277(1–3), 250–256 (2011)

    Article  Google Scholar 

  16. Kiso, Y.; Sugiura, Y.; Kitao, T.; Nishimura, K.: Effects of hydrophobicity and molecular size on rejection of aromatic pesticides with nanofiltration membranes. J. Membr. Sci. 192(1–2), 1–10 (2001)

    Article  Google Scholar 

  17. Schäfer, A.I.N.L.D.W.T.D.: Removal of the natural hormone estrone from aqueous solutions using nanofiltration and reverse osmosis. Environ. Sci. Technol. 37(1), 182–188 (2003)

    Article  MathSciNet  Google Scholar 

  18. Kimura, K.; Amy, G.; Drewes, J.E.; Heberer, T.; Kim, T.-U.; Watanabe, Y.: Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. J. Membr. Sci. 227(1–2), 113–121 (2003)

    Article  Google Scholar 

  19. Nghiem, L.D.; Schafer, A.I.; Elimelech, M.: Removal of natural hormones by nanofiltration membranes: measurement, modeling, and mechanisms. Environ. Sci. Technol. 38(6), 1888–1896 (2004)

    Article  Google Scholar 

  20. Ozaki, H.; Li, H.: Rejection of organic compounds by ultra-low pressure reverse osmosis membrane. Water Res. 36(1), 123–130 (2002)

    Article  Google Scholar 

  21. Bellona, C.; Drewes, J.E.: The role of membrane surface charge and solute physico-chemical properties in the rejection of organic acids by NF membranes. J. Membr. Sci. 249(1–2), 227–234 (2005)

    Article  Google Scholar 

  22. Xu, P.; Drewes, J.E.; Bellona, C.; Amy, G.; Kim, T.U.; Adam, M.; Heberer, T.: Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications. Water Environ. Res. 77(1), 40–48 (2005)

    Article  Google Scholar 

  23. Cornelissen, E.R.; Verdouw, J.; Gijsbertsen-Abrahamse, A.J.; Hofman, J.A.M.H.: A nanofiltration retention model for trace contaminants in drinking water sources. Desalination 178(1–3), 179–192 (2005)

    Article  Google Scholar 

  24. Kim, T.-U.; Drewes, J.E.; Scott Summers, R.; Amy, G.L.: Solute transport model for trace organic neutral and charged compounds through nanofiltration and reverse osmosis membranes. Water Res. 41(17), 3977–3988 (2007)

    Article  Google Scholar 

  25. Verliefde, A.R.D.; Cornelissen, E.R.; Heijman, S.G.J.; Verberk, J.Q.J.C.; Amy, G.L.; Van der Bruggen, B.; van Dijk, J.C.: The role of electrostatic interactions on the rejection of organic solutes in aqueous solutions with nanofiltration. J. Membr. Sci. 322(1), 52–66 (2008)

    Article  Google Scholar 

  26. Dornier, M.; Decloux, M.; Trystram, G.; Lebert, G.: Dynamic modeling of crossflow microfiltration using neural networks. J. Membr. Sci. 98(3), 263–273 (1995)

    Article  Google Scholar 

  27. Sahoo, G.B.; Ray, C.: Predicting flux decline in crossflow membranes using artificial neural networks and genetic algorithms. J. Membr. Sci. 283(1–2), 147–157 (2006)

    Article  Google Scholar 

  28. Libotean, D.; Giralt, J.; Giralt, F.; Rallo, R.; Wolfe, T.; Cohen, Y.: Neural network approach for modeling the performance of reverse osmosis membrane desalting. J. Membr. Sci. 326(2), 408–419 (2009)

    Article  Google Scholar 

  29. Abbas, A.; Al-Bastaki, N.: Modeling of an RO water desalination unit using neural networks. Chem. Eng. J. 114(1–3), 139–143 (2005)

    Article  Google Scholar 

  30. Khayet, M.; Cojocaru, C.; Essalhi, M.: Artificial neural network modeling and response surface methodology of desalination by reverse osmosis. J. Membr. Sci. 368(1–2), 202–214 (2011)

    Article  Google Scholar 

  31. Khayet, M.; Cojocaru, C.: Artificial neural network modeling and optimization of desalination by air gap membrane distillation. Sep. Purif. Technol. 86, 171–182 (2012)

    Article  Google Scholar 

  32. Khajeh, M.; Kaykhaii, M.; Hashemi, S.H.; Shakeri, M.: Particle swarm optimization-artificial neural network modeling and optimization of leachable zinc from flour samples by miniaturized homogenous liquid-liquid microextraction. J. Food Compos. Anal. 33(1), 32–38 (2014)

    Article  Google Scholar 

  33. Niu, D.; Wang, F.; Zhang, L.; He, D.; Jia, M.: Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression. Chemometr. Intell. Lab. 105, 125–130 (2011)

    Article  Google Scholar 

  34. Zhang, J.: Developing robust non-linear models through bootstrap aggregated neural networks. Neurocomputing 25, 93–113 (1999)

    Article  MATH  Google Scholar 

  35. Hansen, L.K.; Salamon, P.: Neural network ensembles. IEEE T. Pattern. Anal. 12, 993–1001 (1990)

    Article  Google Scholar 

  36. Zhou, Z.H.; Jiang, Y.; Yang, Y.B.; Chen, S.F.: Lung cancer cell identification based on artificial neural network ensembles. Artif. Intell. Med. 24, 25–36 (2002)

    Article  Google Scholar 

  37. Garcia-Pedrajas, N.; Hervas-Martinez, U.; Ortiz-Boyer, D.: Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE T. Evolut. Comput. 9, 271–302 (2005)

    Article  Google Scholar 

  38. Parasuraman, K.; Elshorbagy, A.; Si, B.C.: Estimating saturated hydraulic conductivity in spatially variable fields using neural network ensembles. Soil Sci. Soc. Am. J. 70, 1851–1859 (2006)

    Article  Google Scholar 

  39. Sridhar, D.V.; Seagrave, R.C.; Bartlett, E.B.: Process modelling using stacked neural networks. AIChE J. 42(9), 2529–2539 (1996)

    Article  Google Scholar 

  40. Zhang, J.; Martin, E.B.; Morris, A.J.; Kiparissides, C.: Inferential estimation of polymer quality using stacked neural networks. Comput. Chem. Eng. 21, s1025–s1030 (1997)

    Article  Google Scholar 

  41. Wolpert, D.H.: Stacked generalization. Neural Netw. 5, 241–259 (1992)

    Article  Google Scholar 

  42. Yangali-Quintanilla, V.; Kennedy, M.; Amy, G.; Kim, T.U.: Modeling of RO/NF membrane rejections of PhACs and organic compounds: a statistical analysis. Drink. Water Eng. Sci. 1(1), 7–15 (2008)

    Article  Google Scholar 

  43. Yangali-Quintanilla, V.; Verliefde, A.; Kim, T.U.; Sadmani, A.; Kennedy, M.; Amy, G.: Artificial neural network models based on QSAR for predicting rejection of neutral organic compounds by polyamide nanofiltration and reverse osmosis membranes. J. Membr. Sci. 342(1–2), 251–262 (2009)

    Article  Google Scholar 

  44. Tang, C.Y.; Kwon, Y.-N.; Leckie, J.O.: Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers. Desalination 242(1–3), 168–182 (2009)

    Article  Google Scholar 

  45. Huang, H.; Cho, H.; Schwab, K.; Jacangelo, J.G.: Effects of feedwater pretreatment on the removal of organic microconstituents by a low fouling reverse osmosis membrane. Desalination 281, 446–454 (2011)

    Article  Google Scholar 

  46. Plakas, K.V.; Karabelas, A.J.: A systematic study on triazine retention by fouled with humic substances NF/ULPRO membranes. Sep. Purif. Technol. 80(2), 246–261 (2011)

    Article  Google Scholar 

  47. Dolar, D.; Vuković, A.; Ašperger, D.; Košutić, K.: Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes. J. Environ. Sci. 23(8), 1299–1307 (2011)

    Article  Google Scholar 

  48. Dolar, D.; Kosutic, K.; Asperger, D.: Influence of adsorption of pharmaceuticals onto RO/NF membranes on their removal from water. Water Air Soil Poll. 224(1), 1–13 (2013)

  49. Dolar, D.; Košutić, K.; Periša, M.; Babić, S.: Photolysis of enrofloxacin and removal of its photodegradation products from water by reverse osmosis and nanofiltration membranes. Sep. Purif. Technol. 115, 1–8 (2013)

  50. Kimura, K.; Toshima, S.; Amy, G.; Watanabe, Y.: Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs) by RO membranes. J. Membr. Sci. 245(1–2), 71–78 (2004)

  51. Van Der Bruggen, B.; Schaep, J.; Wilms, D.; Vandecasteele, C.: A comparison of models to describe the maximal retention of organic molecules in nanofiltration. Separ. Sci. Technol. 35(2), 169–182 (2000)

    Article  Google Scholar 

  52. Kiso, Y.; Nishimura, Y.; Kitao, T.; Nishimura, K.: Rejection properties of non-phenylic pesticides with nanofiltration membranes. J. Membr. Sci. 171(2), 229–237 (2000)

    Article  Google Scholar 

  53. Santos, J.L.C.; de Beukelaar, P.; Vankelecom, I.F.J.; Velizarov, S.; Crespo, J.G.: Effect of solute geometry and orientation on the rejection of uncharged compounds by nanofiltration. Sep. Purif. Technol. 50(1), 122–131 (2006)

    Article  Google Scholar 

  54. Si-Moussa, C.H.S.D.R.B.M.B.A.: Prediciton of high-pressure vapor liquid equilibrium of six binary systems, carbon dioxide with six esters, using an artificial neural network model. Braz. J. Chem. Eng. 25(1), 183–199 (2008)

    Article  Google Scholar 

  55. Lee, D.S.; Park, J.M.: Neural network modeling for on-line estimation of nutrient dynamics in a sequentially-operated batch reactor. J. Biotechnol. 75(2–3), 229–239 (1999)

    Article  Google Scholar 

  56. Silva, R.G.; Cruz, A.J.G.; Hokka, C.O.; Giordano, R.L.C.; Giordano, R.C.: A hybrid feedforward neural network model for the cephalosporin C production process. Braz. J. Chem. Eng. 17(4–7), 587–598 (2000)

    Article  Google Scholar 

  57. Kruzlicova, D.; Mocak, J.; Balla, B.; Petka, J.; Farkova, M.; Havel, J.: Classification of Slovak white wines using artificial neural networks and discriminant techniques. Food Chem. 112(4), 1046–1052 (2009)

    Article  Google Scholar 

  58. Bishop, C.: Improving the generalisation properties of radial basis function neural networks. Neural Comput. 13, 579–588 (1991)

    Article  Google Scholar 

  59. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  60. MacKay, D.J.C.: Bayesian interpolation. Neural Comput. 4, 415–447 (1992)

    Article  MATH  Google Scholar 

  61. Zhang, J.: Developing robust neural network models by using both dynamic and static process operating data. Ind. Eng. Chem. Res. 40, 234–241 (2001)

    Article  Google Scholar 

  62. Sarkhosh, M.; Jahan, B.; Ghasemi, M.A.: A quantitative structure-property relationship of gas chromatographic/ mass spectrometric retention data of 85 volatile organic compounds as air pollutant materials by multivariate methods. Chem. Cent. J. 6(Suppl 2), S4 (2012)

    Article  Google Scholar 

  63. Efron, B.; Tibshirani, R.: An Introduction to Bootstrap. Chapman and Hall, London (1993)

    Book  MATH  Google Scholar 

  64. Vahdani, B.; Meysam Mousavi, S.; Hashemi, H.; Mousakhani, M.; Ebrahimnejad, S.: A new hybrid model based on least squares support vector machine for project selection problem in construction industry. Arab J. Sci. Eng. 39(5), 4301–4314 (2014)

    Article  Google Scholar 

  65. Ladlani, I.; Houichi, L.; Djemili, L.; Heddam, S.; Belouz, K.: Estimation of daily reference evapotranspiration (ET0) in the North of Algeria using adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) models: a comparative study. Arab J. Sci. Eng. 39(8), 5959–5969 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latifa Khaouane.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (xlsx 49 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaouane, L., Ammi, Y. & Hanini, S. Modeling the Retention of Organic Compounds by Nanofiltration and Reverse Osmosis Membranes Using Bootstrap Aggregated Neural Networks. Arab J Sci Eng 42, 1443–1453 (2017). https://doi.org/10.1007/s13369-016-2320-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2320-2

Keywords

Navigation