Skip to main content
Log in

Impounding of ortho-Chlorophenol by Zeolitic Materials Adapted from Bagasse Fly Ash: Four Factor Three Level Box-Behnken Design Modelling and Optimization

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present study enlightens the impounding of ortho-chlorophenol (OCP) onto zeolitic composites derived from agricultural waste Bagasse Fly Ash (BFA). The OCP impounding was enhanced by modifying native BFA by electrolyte supported microwave hydrothermal treatment (MZBFA) and magnetic modification (MMZBFA). The synthesized sorbents were characterized by instrumental techniques (XRF, PXRD, SEM and FTIR). The adsorption process was optimized under four different process variables like: pH (4–7), agitation time (30–120 min), initial sorbate concentration (\({50-150\,{\rm mg}\,{\rm L}^{-1}}\)), sorbent dosage (\({1-4\,{\rm g}\,{\rm L}^{-1}}\)) based on Box-Behnken design with response surface methodology. The highest predicted adsorption capacities at pH 7 with \({1\,{\rm g}\,{\rm L}^{-1}}\) sorbent dose for MZBFA and MMZBFA were found to be 29.95 and \({31.94\,{\rm mg}\,{\rm g}^{-1}}\) for agitation time of 75 and 120 min and initial sorbate concentration 150 and \({100\,{\rm mg}\,{\rm g}^{-1}}\) , respectively, which were approximated with laboratory results. The isotherm data and kinetic data were best described by Langmuir model and pseudo-second-order model, respectively. The sorbents are stable after three cyclic runs when regenerated with 0.5M NaOH solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hank D., Azi Z., Ait Hocine S., Chaalal O., Hellal A.: Optimization of phenol adsorption onto bentonite by factorial design Methodology. J. Ind. Eng. Chem. 20, 2256–2263 (2014)

    Article  Google Scholar 

  2. Lin S.-H., Juang R.-S.: Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review. J. Environ. Manag. 90, 1336–1349 (2009)

    Article  Google Scholar 

  3. Yang J., Zhou M., Zhao Y., Zhang C., Hu Y.: Electrosorption driven by microbial fuel cells to remove phenol without external power supply. Bioresour. Technol. 150, 271–277 (2013)

    Article  Google Scholar 

  4. Soto M.L., Moure A., Domínguez H., Parajó J.C.: Recovery, concentration and purification of phenolic compounds by adsorption: A review. J. Food Eng. 105, 1–27 (2011)

    Article  Google Scholar 

  5. El-Naas M.H., Al-Zuhair S., Alhaija M.A.: Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon. Chem. Eng. J. 162, 997–1005 (2010)

    Article  Google Scholar 

  6. Shah B.A., Shah A.V., Tailor R.: Adaptation of bagasse fly ash a sugar industry solid waste into zeolitic material for the uptake of phenol. Environ. Prog. Sustain 30(3), 359–367 (2011)

    Article  Google Scholar 

  7. Huang J., Wanga X., Jina Q., Liua Y., Wang Y.: Removal of phenol from aqueous solution by adsorption onto OTMAC-modified attapulgite. J. Environ. Manag. 84, 229–236 (2007)

    Article  Google Scholar 

  8. Ku Y., Lee K.C., Wang W.: Removal of Phenols from Aqueous solutions by Purolite A-510 Resin. Sep. Sci. Technol. 39, 911–923 (2004)

    Article  Google Scholar 

  9. Tak B., Tak B., Kim Y., Park Y., Yoon Y., Min G.: Optimization of color and COD removal from livestock wastewater by electrocoagulation process: Application of Box-Behnken design (BBD). J. Ind. Eng. Chem. 28, 307–315 (2015)

    Article  Google Scholar 

  10. Kamcharoen A., Champreda V., Eurwilaichitr L., Boonsawang P.: Screening and optimization of parameters affecting fungal pretreatment of oil palm empty fruit bunch (EFB) by experimental design. Int. J. Energy Environ. Eng. 5, 303–312 (2014)

    Article  Google Scholar 

  11. Oliveira L.C., Petkowicz D.I., Smaniotto A., Pergher S.: Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water Res. 38(17), 3699–3704 (2004)

    Article  Google Scholar 

  12. Noh J.S., Schwarz J.A.: Estimation of the point of zero charge of simple oxides by mass titration. J. Colloid Interface Sci. 130, 157–164 (1989)

    Article  Google Scholar 

  13. Yue L., Wang L., Shi F., Guo J., Yang J., Lian J., Luo X.: Application of response surface methodology to the decolorization by the electrochemical process using \({{\rm FePMo}_{12}{\rm O}_{40}}\) catalyst. J. Ind. Eng. Chem. 21, 971–979 (2015)

    Article  Google Scholar 

  14. Thirugnanasambandham K., Sivakumar V., Maran J. P., Kandasamy S.: Chitosan based grey wastewater treatment—A statistical design Approach. Carbohydr. Polym. 99, 593–600 (2014)

    Article  Google Scholar 

  15. Thirugnanasambandham K., Sivakumar V.: An eco-friendly approach for copper (II) ion adsorption onto cotton seed cake and its characterization: Simulation and validation. J. Taiwan Inst. Chem. Eng. 50, 198–204 (2015)

    Article  Google Scholar 

  16. Vogel A.I.: A Text Book of Quantitative Analysis, 5th edn. ELBS, London (1989)

    Google Scholar 

  17. Brasquet C.F., Kadirvelu K., Le C.P.: Removal of Cu(II), Pb(II), and Ni(II) by adsorption onto activated carbon cloths. Langmuir 16, 8404–8409 (2000)

    Article  Google Scholar 

  18. Huo H., Lin H., Dong Y., Cheng~Wang H.H., Cao L.: Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite. J. Hazard. Mater. 229–230, 292–297 (2012)

    Article  Google Scholar 

  19. Joint committee on powder diffraction standards, Index (Inorganic to the powder diffraction file, Publication PDIS-211; Newton Square, PA (1971)

  20. Nah I.W.K., Hwang Y., Shul Y.G.: A simple synthesis of magnetically modified zeolite. Powder Technol. 177(2), 99–101 (2007)

    Article  Google Scholar 

  21. Shah B.A., Shah A.V., Mistry C.B., Tailor R.V., Patel H.D.: Surface Modified Bagasse Fly Ash Zeolites for Removal of Reactive Black-5. J. Dispers. Sci. Technol. 32(9), 1247–1255 (2011)

    Article  Google Scholar 

  22. Inada M., Tsujimoto H., Eguchi , Enomoto N., Hojo J.: Microwave assisted zeolite synthesis from coal fly ash in hydrothermal process. Fuel 84, 482–1486 (2005)

    Article  Google Scholar 

  23. Sapawe N., Jalil A.A., Triwahyono S., Shah M.I.A., Jusoh R., Salleh N.F.M., Hameed B.H., Karim A.H.: Cost-effective microwave rapid synthesis of zeolite NaA for removal of methylene blue. Chem. Eng. J. 229, 388–398 (2013)

    Article  Google Scholar 

  24. Shah B.A., Mistry C.B., Shah A.V.: Sequestration of Cu(II) and Ni(II) from wastewater by synthesized zeolitic materials: Equilibrium, kinetics and column dynamics. Chem. Eng. J. 220, 172–184 (2013)

    Article  Google Scholar 

  25. Sari A., Tuzen M., Soylak M.: Adsorption of Pb(II) and Cr(III) from aqueous solution on Celtek clay. J. Hazard. Mater. 144, 41–46 (2007)

    Article  Google Scholar 

  26. Anirudhan T.S., Shainy F.: Adsorption behaviour of 2-mercaptobenzamide modified itaconic acid-grafted-magnetite nano cellulose composite for cadmium(II) from aqueous solutions. J. Ind. Eng. Chem. 32, 157–166 (2015)

    Article  Google Scholar 

  27. Shah B., Tailor R., Shah A.: Sorptive sequestration of 2-chlorophenol by zeolitic materials derived from bagasse fly ash. J. Chem. Technol. Biotechnol. 86, 1265–1275 (2011)

    Article  Google Scholar 

  28. Kao P.N., Tzeng J.H., Huang T.L.: Removal of chlorophenols from aqueous solution by fly ash. J. Hazard. Mater. 76, 237–249 (2000)

    Article  Google Scholar 

  29. Coughlin R.W., Ezra F.S.: Role of surface acidity in the adsorption of organic pollutants on the surface of carbon. Environ. Sci. Technol. 2, 291–297 (1968)

    Article  Google Scholar 

  30. Hunter C.A., Sanders J.K.M.: The nature of \({{\pi}}\)\({{\pi}}\) interactions. J. Am. Chem. Soc. 112, 5525–5534 (1990)

    Article  Google Scholar 

  31. Liu Q.-S., Zheng T., Wang P., Jiang J.-P., Li N.: Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem. Eng. J. 157, 348–356 (2010)

    Article  Google Scholar 

  32. Ghaedi, M. Shojaeipour.; Ghaedi, E.A.M.; Sahraei, Reza.: Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: Artificial neural network modeling and genetic algorithm optimization. Spectrochim. Acta A Mol. Biomol. Spectrosc. 142, 135–149 (2015) 900

  33. Khare P., Kumar A.: Removal of phenol from aqueous solution using carbonized Terminalia chebula-activated carbon: process parametric optimization using conventional method and Taguchi’s experimental design, adsorption kinetic, equilibrium and thermodynamic study. Appl. Water Sci. 2, 317–326 (2012)

    Article  Google Scholar 

  34. Tak B.-y., Tak B.-s., Kim Y.-j., Park Y.-j., Yoon Y.-h., Min G.-h.: Optimization of color and COD removal from livestock wastewater by electrocoagulation process: Application of Box-Behnken design (BBD). J. Ind. Eng. Chem. 28, 307–315 (2015)

    Article  Google Scholar 

  35. Langmuir I.: The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 38, 2221–2295 (1916)

    Article  Google Scholar 

  36. Ghasemi M., Khosroshahy M.Z., Abbasabadi A.B., Ghasemi N., Javadian H., Fattahi M.: Microwave-assisted functionalization of Rosa Canina-L fruits activated carbon with tetraethylenepentamine and its adsorption behaviour toward Ni(II) in aqueous solution: Kinetic, equilibrium and thermodynamic studies. Powder Technol. 274, 362–371 (2015)

    Article  Google Scholar 

  37. Zheng L., Wang C., Shu Y., Yan X., Li L.: Utilization of diatomite/chitosan–Fe (III) composite for the removal of anionic azo dyes from wastewater: Equilibrium, kinetics and thermodynamics. Colloids Surf. A Physicochem. Eng. Asp. 468, 129–139 (2015)

    Article  Google Scholar 

  38. Hameed B.H., Rahman A.A.: Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J. Hazard. Mater. 160, 576–581 (2008)

    Article  Google Scholar 

  39. Vijayaraghavan K., Padmesh T.V., Palanivelu K., Velan M.: Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three parameter isotherm models. J. Hazard. Mater. 133, 304–308 (2006)

    Article  Google Scholar 

  40. Amirnia S., Ray M.B., Margaritis A.: Copper ion removal by Acer saccharum leaves in a regenerable continuous-flow column. Chem. Eng. J. 287, 755–764 (2016)

    Article  Google Scholar 

  41. Ghaedi M., Rozkhoosh Z., Asfaram A., Mirtamizdoust B., Mahmoudi Z., Bazrafshan A.A.: Comparative studies on removal of Erythrosine using ZnS and AgOH nanoparticles loaded on activated carbon as adsorbents: Kinetic and isotherm studies of adsorption. Spectrochim. Acta A Mol. Biomol. Spectrosc. 138, 176–186 (2015)

    Article  Google Scholar 

  42. Weber T.W., Chakraborti R.K.: Pore and solid diffusion models for fixed bed adsorbers. Am. Inst. Chem. Eng. J. 20, 228–238 (1974)

    Article  Google Scholar 

  43. Gupta V.K., Ali I., Saini V.K.: Removal of chlorophenols from wastewater using red mud: an aluminum industry waste. Environ. Sci. Technol. 38, 4012–4018 (2004)

    Article  Google Scholar 

  44. Shiundu P.M., Mbui D.N., Ndonye R.M., Kamau G.M.: Adsorption and detection of some phenolic compounds by rice husk ash of Kenyan origin. J. Environ. Monit. 4, 978–984 (2002)

    Article  Google Scholar 

  45. Javadian H., Vahedian P., Toosi M.: Adsorption characteristics of Ni(II) from aqueous solution and industrial wastewater onto polyaniline/HMS nanocomposite powder. Appl. Surf. Sci. 284, 13–22 (2013)

    Article  Google Scholar 

  46. Elmoubarki R., Mahjoubi F.Z., Tounsadi H., Moustadraf J., Abdennouri M., Zouhri A., ElAlbani A., Barka N.: Adsorption of textile dyes on raw and decanted Moroccan clays: kinetics, equilibrium and thermodynamics. Water Resour. Ind. 9, 16–29 (2015)

    Article  Google Scholar 

  47. Temkin M.J., Pyzhev V.: Recent modifications to Langmuir Isotherms. Acta Physiochim. USSR 12, 217–222 (1940)

    Google Scholar 

  48. Blazquez G., Martin-Lara M.A., Tenorio G., Calero M.: Batch biosorption of lead (II) from aqueous solutions by olive tree pruning waste: Equilibrium, kinetics and thermodynamic study. Chem. Eng. 168, 170–177 (2011)

    Article  Google Scholar 

  49. Lagergren S.: About the theory of the so-called adsorption of soluble substances. Kun. Sven. Vetenskapsakad. Handl. 24, 1–39 (1898)

    Google Scholar 

  50. Belaid K.D., Kacha S., Kameche M., Derriche Z.: Adsorption kinetics of some textile dyes onto granular activated carbon. J. Environ. Chem. Eng. 1, 496–503 (2013)

    Article  Google Scholar 

  51. Ho Y.S., Mckay G.: Pseudo-second-order model for sorption processes. Process Biochem. 34, 451–465 (1999)

    Article  Google Scholar 

  52. Al Hamouz O.C.S.: Synthesis and Characterization of a Novel Series of Cross-Linked (Phenol, Formaldehyde, Alkyldiamine) Terpolymers for the Removal of Toxic Metal Ions from Wastewater. Arab. J. Sci. Eng. 41, 119–133 (2015)

    Article  Google Scholar 

  53. Barka N., Abdennouri M., El Makhfouk M., Qourzal S.: Biosorption characteristics of cadmium and lead onto eco-friendly dried cactus (Opuntia ficus indica) cladodes. J. Environ. Chem. Eng. 1, 144–149 (2013)

    Article  Google Scholar 

  54. Chien S.H., Clayton W.R.: Application of Elovich equation to the kinetics of phosphate release and sorption on soil. Soil Sci. Soc. Am. 44, 265–268 (1980)

    Article  Google Scholar 

  55. Amirnia S., Ray M.B., Margaritis A.: Heavy metals removal from aqueous solutions using Saccharomyces cerevisiae in a novel continuous bioreactor–biosorption system. Chem. Eng. J. 264, 863–872 (2015)

    Article  Google Scholar 

  56. Shu J., Wang Z., Huang , Ni~Huang Y., Ren C., Zhang W.: Adsorption removal of Congo red from aqueous solution by polyhedral \({{\rm Cu}_{2}{\rm O}}\) nanoparticles: Kinetics, isotherms, thermodynamics and mechanism analysis. J. Alloys Compd. 633, 338–346 (2015)

    Article  Google Scholar 

  57. Shah B.A., Shah A.V., Singh R.R., Patel N.B.: Sorptive removal of nickel onto weathered basaltic andesite products: kinetics and isotherms. J. Environ. Sci. Health A 44, 880–895 (2009)

    Article  Google Scholar 

  58. Ncibi M.C., Gaspard S., Sillanpää M.: As-synthesized multi-walled carbon nanotubes for the removal of ionic and non-ionic surfactants. J. Hazard. Mater. 286, 195–203 (2015)

    Article  Google Scholar 

  59. Anirudhan T.S., Sreekumari S.S., Brigle C.D.: Removal of phenols from water and petroleum industry refinery effluents by activated carbon obtained from coconut coir pith. Adsorption 15, 439–451 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavna A. Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, B.A., Pandya, D.D. & Shah, H.A. Impounding of ortho-Chlorophenol by Zeolitic Materials Adapted from Bagasse Fly Ash: Four Factor Three Level Box-Behnken Design Modelling and Optimization. Arab J Sci Eng 42, 241–260 (2017). https://doi.org/10.1007/s13369-016-2294-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2294-0

Keywords

Navigation