Skip to main content
Log in

Mechanism of Intercalation Extent in Polymer/Clay Nanocomposites

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The mechanism of the intercalation and the expansion of the interlayer distance of nanoclays due to the penetration of polymeric chains is studied using X-ray diffraction as a function of temperature. Poly(trimethylene terephthalate) (PTT) and poly(trimethylene naphthalate) (PTN) belonging to the polyester family were chosen for the formation of nanocomposites with the layered structure nanoclays. The PTN contains the polymorphism (α-form and β-form) with respect to the temperature. In case of PTT/nanoclay composites, the relative increase in the intercalation extent is found with increasing the temperature. For PTN/nanoclay composite, the intercalation extent is relatively decreased by increasing the temperature due to the fact that thermodynamically and kinetically the transformation of α- to β-form is favored instead of the expansion of nanoclay’s interlayer distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khan A.N., Ahmed B.A.: Comparative study of polyamide 6 reinforced with glass fibre and montmorillonite. Polym. Bull. 72, 1207–1216 (2015)

    Article  Google Scholar 

  2. Pinnavaia T.J.: Intercalated clay catalysts. Science 220, 365–371 (1983)

    Article  Google Scholar 

  3. Carrado K.A.: Synthetic organo-and polymer clays: preparation, characterization and materials applications. Appl. Clay Sci. 17, 1–23 (2000)

    Article  Google Scholar 

  4. Xu B., Zheng Q., Song Y.H., Shangguan Y.: Calculating barrier properties of polymer/clay nanocomposites: effects of clay layers. Polymer 47, 2904–2910 (2006)

    Article  Google Scholar 

  5. Shi H., Lan T., Pinnavaia T.J.: Interfacial effects on the reinforcement properties of polymer–organoclay nanocomposites. Chem. Mater. 8, 1584–1587 (1996)

    Article  Google Scholar 

  6. Boo W.J., Sun L., Liu J., Clearfield A., Sue H.J.: Effective intercalation and exfoliation of nanoplatelets in epoxy via creation of porous pathways. J. Phys. Chem. C 111, 10377–10381 (2007)

    Article  Google Scholar 

  7. Chen B., Evans J.R.G.: Preferential intercalation in polymer–clay nanocomposites. J. Phys. Chem. B 108, 14986–14990 (2004)

    Article  Google Scholar 

  8. Bousmina M.: Study of intercalation and exfoliation processes in polymer nanocomposites. Macromolecules 39, 4259–4263 (2006)

    Article  Google Scholar 

  9. Lan T., Kaviratna P.D., Pinnavaia T.J.: Mechanism of clay tactoid exfoliation in epoxy–clay nanocomposites. Chem. Mater. 7, 2144–2150 (1995)

    Article  Google Scholar 

  10. Triantafillidis C.S., LeBaron P.C., Pinnavaia T.J.: Homostructured mixed inorganic–organic ion clays: a new approach to epoxy polymer-exfoliated clay nanocomposites with a reduced organic modifier content. Chem. Mater. 14, 4088–4095 (2002)

    Article  Google Scholar 

  11. Vaia R.A., Jandt K.D., Kramer E.J., Giannelis E.P.: Kinetics of polymer melt intercalation. Macromolecules 28, 8080–8085 (1995)

    Article  Google Scholar 

  12. Krishnamoorti R., Vaia R.A., Giannelis E.P.: Structure and dynamics of polymer-layered silicate nanocomposites. Chem. Mater. 8, 1728–1734 (1996)

    Article  Google Scholar 

  13. Sikdar D., Katti D.R., Katti K.S., Bhowmik R.: Insight into molecular interactions between constituents in polymer clay nanocomposites. Polymer 47, 5196–5205 (2006)

    Article  Google Scholar 

  14. Anastasiadis S.H., Karatasos K., Vlachos G.: Nanoscopic-confinement effects on local dynamics. Phys. Rev. Lett. 84, 915–918 (2000)

    Article  Google Scholar 

  15. Vaia R.A., Giannelis E.P.: Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules 30, 7990–7999 (1997)

    Article  Google Scholar 

  16. Vaia R.A., Giannelis E.P.: Polymer melt intercalation in organically-modified layered silicates: model predictions and experiment. Macromolecules 30, 8000–8009 (1997)

    Article  Google Scholar 

  17. Hong P.D., Chuang W.T., Yeh W.J., Lin T.L.: Effect of rigid amorphous phase on glass transition behavior of poly(trimethylene terephthalate). Polymer 43, 6879–6886 (2002)

    Article  Google Scholar 

  18. Chuang W.T., Hong P.D., Shih K.H.: Structural formation and gelation behavior of cold-crystallized poly(trimethylene terephthalate). Polymer 45, 8583–8592 (2004)

    Article  Google Scholar 

  19. Chung W.T., Yeh W.J., Hong P.D.: Melting behavior of poly(trimethylene terephthalate). J. Appl. Polym. Sci. 83, 2426–2433 (2001)

    Article  Google Scholar 

  20. Chuang W.T., Hong P.D., Chen C.H., Sheu H.S., Jeng U.S.: Melting behavior of polymorphic crystals of poly(trimethylene 2,6-naphthalate) studied by simultaneous synchrotron X-ray scattering and thermal analysis. J. Appl. Cryst. 40, s637–s641 (2007)

    Article  Google Scholar 

  21. Khan A.N., Hong P.D., Chuang W.T., Shih K.S.: Crystallization kinetics and structure of poly(trimethylene terephthalate)/monolayer nano-mica nanocomposites. Mater. Chem. Phys. 119, 93–99 (2010)

    Article  Google Scholar 

  22. Maiti P., Nam P.H., Okamoto M.: Influence of crystallization on intercalation, morphology and mechanical properties of polypropylene/clay nanocomposites. Macromolecules 35, 2042–2049 (2002)

    Article  Google Scholar 

  23. Khan A.N., Hong P.D., Chuang W.T.: Relaxation behavior of poly(trimethylene 2,6-naphthalate) in nanoclay confinement. J. Polym. Res. 20, 280–288 (2013)

    Article  Google Scholar 

  24. Khan A.N., Hong P.D., Chuang W.T., Shih K.S.: Effect of uniaxial drawing on the structure and glass transition behavior of poly(trimethylene 2,6-naphthalate)/layered clay nanocomposites. Polymer 50, 6287–6296 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Nawaz Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.N., Hayder, A. & Chuang, WT. Mechanism of Intercalation Extent in Polymer/Clay Nanocomposites. Arab J Sci Eng 40, 3373–3377 (2015). https://doi.org/10.1007/s13369-015-1845-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1845-0

Keywords

Navigation