Skip to main content

Advertisement

Log in

Bio-Oil Production from Fast Pyrolysis of Cotton Stalk in Fluidized Bed Reactor

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Fast pyrolysis was used to convert waste biomass into bio-oil, which has a benefit of storage and transportation with the potential as a fossil oil substitute. Pakistani cotton stalk was pyrolyzed in a bench-scale bubbling fluidized bed reactor. The effect of reaction conditions such as temperature and feed size on the bio-oil, char and gas yields was investigated. The optimal pyrolysis temperature for the production of bio-oil was 490 °C which gave the maximum yield (36 wt%) of product at feed size of 1.0 mm. Bio-oil yield increased with the increase in temperature, while the yield of char decreased. The various properties of bio-oil attained under these pyrolysis conditions were defined. Chemical composition of bio-oil was determined using FTIR and GC–MS analysis, and major chemical compounds were phenols, carboxylic acids, ketones, aldehydes, furans and sugars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gokmen A., Temiz D.: The importance and impact of fossil and renewable energy sources in Turkey on business and the economy. Energy Sourc. Part B Econ. Plann. Policy 10(1), 14–20 (2015)

    Article  Google Scholar 

  2. Panwar N.L., Kaushik S.C., Kothari S.: Role of renewable energy sources in environmental protection: a review. Renew. Sustain. Energy Rev. 15(3), 1513–1524 (2011)

    Article  Google Scholar 

  3. Hall, D.O.; Barnard, G.W.; Moss, P.A.: Biomass for energy in the developing countries: current role, potential, problems, prospects. Elsevier, (2013)

  4. Bridgewater A.V.: Biomass fast pyrolysis. Thermal Sci. 8(2), 21–50 (2004)

    Article  Google Scholar 

  5. Bioenergy I.E.A.: Bioenergy,IEA Bioenergy-a Sustainable and Reliable Energy Source. International Energy Agency Bioenergy, Paris (2009)

    Google Scholar 

  6. Garcia-Parez M., Chaala A., Roy C.: Vacuum pyrolysis of sugarcane bagasse. J. Anal. Appl. Pyrolysis 65(2), 111–136 (2002)

    Article  Google Scholar 

  7. Bentsen N.S., Felby C.: Biomass for energy in the European Union—a review of bioenergy resource assessments. Biotech. Biofuels 5(1), 25 (2012)

    Article  Google Scholar 

  8. Carpenter D., Westover T.L., Czernik S., Jablonski W.: Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem. 16(2), 384–406 (2014)

    Article  Google Scholar 

  9. Khan R.A., Khan A.N., Ahmed M., Khan M.R., Shah M.S., Azam N., Sadullah F., Dian F., Ullah S., Khan N.: Bioethanol sources in Pakistan: a renewable energy resource. Afr. J. Biotechnol. 10(86), 19850–19854 (2014)

    Google Scholar 

  10. Koopmans, A.; Koppejan, J.: Agricultural and forest residues-generation, utilization and availability. In: Paper Presented at the Regional Consultation on Modern Applications of Biomass Energy, vol. 6:10 (1997)

  11. Farooq M.K., Kumar S.: An assessment of renewable energy potential for electricity generation in Pakistan. Renew. Sustain. Energy Rev. 20, 240–254 (2013)

    Article  Google Scholar 

  12. Bridgwater A.V.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38, 68–94 (2012)

    Article  Google Scholar 

  13. Demirbas A.: Biomass resources for energy and chemical industry. Energy Edu. Sci. Technol 5(1), 21–45 (2000)

    Google Scholar 

  14. Bridgwater A.V., Bridge S.A: A Review of Biomass Pyrolysis and Pyrolysis Technologies. Biomass Pyrolysis Liquids Upgrading and Utilization, pp. 11–92. Springer, Berlin (1991)

    Book  Google Scholar 

  15. Goyal H.B., Seal D., Saxena R.C.: Bio-fuels from thermochemical conversion of renewable resources: A review. Renew. Sustain. Energy Rev. 12(2), 504–517 (2008)

    Article  Google Scholar 

  16. Jahirul M.I., Rasul M.G., Chowdhury A.A., Ashwath N.: Biofuels production through biomass pyrolysis—a technological review. Energies 5(12), 4952–5001 (2012)

    Article  Google Scholar 

  17. Meier D., van de Beld B., Bridgwater A.V., Elliott D.C., Oasmaa A., Preto F.: State-of-the-art of fast pyrolysis in IEA bioenergy member countries. Renew. Sustain. Energy Rev. 20, 619–641 (2013)

    Article  Google Scholar 

  18. Meier D., Faix O.: State of the art of applied fast pyrolysis of lignocellulosic materials-a review. Bioresour. Technol. 68(1), 71–77 (1999)

    Article  Google Scholar 

  19. Alper K., Tekin K., Karag S.: Pyrolysis of agricultural residues for bio-oil production. Clean Technol. Environ. Policy 17(1), 211–223 (2015)

    Article  Google Scholar 

  20. Goyal H.B., Saxena R.C., Seal D.: Thermochemical Conversion of Biomass to Liquids and Gas. Monograph communicated to Haworth Press, Philadelphia (2006)

    Google Scholar 

  21. Mohan D., Pittman C.U., Steele P.H.: Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3), 848–889 (2006)

    Article  Google Scholar 

  22. Balat M., Balat M., Kirtay E., Balat H.: Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Convers. Manag. 50(12), 3147–3157 (2009)

    Article  Google Scholar 

  23. Bridgwater A.V.: Principles and practice of biomass fast pyrolysis processes for liquids. J. Anal. Appl. Pyrolysis 51(1), 3–22 (1999)

    Article  Google Scholar 

  24. Daim T.U., Honnappa L., Murthy M., Rusnac C., Pornsatit C.: Technological Assessment of Emerging Technologies in Conversion of Municipal Solid Waste to Energy. Policies and Programs for Sustainable Energy Innovations, pp. 83–105. Springer, Berlin (2006)

    Google Scholar 

  25. Westerhof R.J.M., Brilman D.W.F., van Swaaij W.P.M., Kersten S.R.A.: Effect of temperature in fluidized bed fast pyrolysis of biomass: oil quality assessment in test units. Ind. Eng. Chem. Res. 49(3), 1160–1168 (2009)

    Article  Google Scholar 

  26. Heo H.S., Park H.J., Yim J.-H., Sohn J.M., Park J., Kim S.-S., Ryu C., Jeon J.-K., Park Y.-K.: Influence of operation variables on fast pyrolysis of Miscanthus sinensis var. purpurascens. Bioresour. Technol. 101(10), 3672–3677 (2010) doi:10.1016/j.biortech.2009.12.078

    Article  Google Scholar 

  27. Pattiya A., Suttibak S.: Production of bio-oil via fast pyrolysis of agricultural residues from cassava plantations in a fluidised-bed reactor with a hot vapour filtration unit. J. Anal. Appl. Pyrolysis 95(0), 227–235 (2012) doi:10.1016/j.jaap.2012.02.010

    Article  Google Scholar 

  28. Mourant D., Lievens C., Gunawan R., Wang Y., Hu X., Wu L., Syed-Hassan S.S.A., Li C.-Z.: Effects of temperature on the yields and properties of bio-oil from the fast pyrolysis of mallee bark. Fuel 108, 400–408 (2013)

    Article  Google Scholar 

  29. Kim S.-S., Agblevor F.A., Lim J.: Fast pyrolysis of chicken litter and turkey litter in a fluidized bed reactor. J. Ind. Eng. Chem. 15(2), 247–252 (2009)

    Article  MATH  Google Scholar 

  30. Montoya, J.I.; Valdés C.; Chejne, F.; Gómez C.A.; Blanco A.; Marrugo, G.; Osorio, J.; Castillo, E.; Aristóbulo, J.; Acero, J.: Bio-oil production from Colombian bagasse by fast pyrolysis in a fluidized bed: An experimental study. J. Anal. Appl. Pyrolysis 112, 379–387 (2015)

  31. Scott D.S., Piskorz J.: The flash pyrolysis of aspen poplar wood. Can. J. Chem. Eng. 60(5), 666–674 (1982)

    Article  Google Scholar 

  32. Raja S.A., Kennedy Z.R., Pillai B.C., Lee C.L.R.: Flash pyrolysis of jatropha oil cake in electrically heated fluidized bed reactor. Energy 35(7), 2819–2823 (2010)

    Article  Google Scholar 

  33. Heidari A., Stahl R., Younesi H., Rashidi A., Troeger N., Ghoreyshi A.A.: Effect of process conditions on product yield and composition of fast pyrolysis of Eucalyptus grandis in fluidized bed reactor. J. Ind. Eng. Chem. 20(4), 2594–2602 (2014)

    Article  Google Scholar 

  34. Park H.J., Dong J.-I., Jeon J.-K., Park Y.-K., Yoo K.-S., Kim S.-S., Kim J., Kim S.: Effects of the operating parameters on the production of bio-oil in the fast pyrolysis of Japanese larch. Chem. Eng. J. 143(1), 124–132 (2008)

    Article  Google Scholar 

  35. Choi H.S., Choi Y.S., Park H.C.: Fast pyrolysis characteristics of lignocellulosic biomass with varying reaction conditions. Renew. Energy 42, 131–135 (2012)

    Article  Google Scholar 

  36. Garcia-Perez M., Wang X.S., Shen J., Rhodes M.J., Tian F., Lee W.-J., Wu H., Li C.-Z.: Fast pyrolysis of oil mallee woody biomass: effect of temperature on the yield and quality of pyrolysis products. Ind. Eng. Chem. Res. 47(6), 1846–1854 (2008)

    Article  Google Scholar 

  37. Ali, N.; Saleem, M.; Shahzad, K.; Chughtai, A.; Khan, W.A.: Fast pyrolysis of Pakistani cotton stalks in fluidized bed reactor: design and preliminary results. Life Sci. J. 11(7), 137–144 (2014)

  38. Kunni, D.; Levenspiel, O.: Fluidization Engineering., Edit. Wiley, EE UU, (1969)

  39. Mullen C.A., Boateng A.A., Goldberg N.M., Lima I.M., Laird D.A., Hicks K.B.: Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenergy 34(1), 67–74 (2010)

    Article  Google Scholar 

  40. Park Y.-K., Yoo M.L., Lee H.W., Park S.H., Jung S.-C., Park S.-S., Kim S.-C.: Effects of operation conditions on pyrolysis characteristics of agricultural residues. Renew. Energy 42, 125–130 (2012)

    Article  Google Scholar 

  41. Demiral Ä.I., Ayan E.A.: Pyrolysis of grape bagasse: effect of pyrolysis conditions on the product yields and characterization of the liquid product. Bioresour. Technol. 102(4), 3946–3951 (2011)

    Article  Google Scholar 

  42. Sulaiman W.R.W., Lee E.S.: Pyrolysis of Eucalyptus wood in a fluidized-bed reactor. Res. Chem. Intermed. 38(8), 2025–2039 (2012)

    Article  Google Scholar 

  43. Heidari A., Stahl R., Younesi H., Rashidi A., Troeger N., Ghoreyshi A.A.: Effect of process conditions on product yield and composition of fast pyrolysis of Eucalyptus grandis in fluidized bed reactor. J. Ind. Eng. Chem. 20(4), 2594–2602 (2013)

    Article  Google Scholar 

  44. Islam M.N., Ani F.N.: Liquid oil from fluidized bed pyrolysis of rice husk waste and its characterization. RERIC Int. Energy J. 20, 55–65 (1998)

    Google Scholar 

  45. Gercel H.F.: The effect of a sweeping gas flow rate on the fast pyrolysis of biomass. Energy Sources 24(7), 633–642 (2002)

    Google Scholar 

  46. Zhou L., Yang H., Wu H., Wang M., Cheng D.: Catalytic pyrolysis of rice husk by mixing with zinc oxide: characterization of bio-oil and its rheological behavior. Fuel Process. Technol. 106, 385–391 (2013)

    Article  Google Scholar 

  47. Tsai W.T., Lee M.K., Chang Y.M.: Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J. Anal. Appl. Pyrolysis 76(1), 230–237 (2006)

    Article  Google Scholar 

  48. Kim S.-J., Jung S.-H., Kim J.-S.: Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds. Bioresour. Technol. 101(23), 9294–9300 (2010)

    Article  Google Scholar 

  49. Akhtar J., Amin N.A.S.: A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 15(3), 1615–1624 (2011)

    Article  Google Scholar 

  50. Wei L., Xu S., Zhang L., Zhang H., Liu C., Zhu H., Liu S.: Characteristics of fast pyrolysis of biomass in a free fall reactor. Fuel Process. Technol. 87(10), 863–871 (2006)

    Article  Google Scholar 

  51. Di Blasi C.: Kinetic and heat transfer control in the slow and flash pyrolysis of solids. Ind. Eng. Chem. Res. 35(1), 37–46 (1996)

    Article  Google Scholar 

  52. Gerdes C., Simon C.M., Ollesch T., Meier D., Kaminsky W.: Design, construction, and operation of a fast pyrolysis plant for biomass. Eng. Life Sci. 2(6), 167–174 (2002)

    Article  Google Scholar 

  53. Shen J., Wang X.-S., Garcia-Perez M., Mourant D., Rhodes M.J., Li C.-Z.: Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel 88(10), 1810–1817 (2009)

    Article  Google Scholar 

  54. Ridout A.J., Carrier M., Gorgens J.: Fast pyrolysis of low and high ash paper waste sludge: Influence of reactor temperature and pellet size. J. Anal. Appl. Pyrolysis 111, 64–75 (2015)

    Article  Google Scholar 

  55. Zhou S., Garcia-Perez M., Pecha B., McDonald A.G., Westerhof R.J.M.: Effect of particle size on the composition of lignin derived oligomers obtained by fast pyrolysis of beech wood. Fuel 125, 15–19 (2014)

    Article  Google Scholar 

  56. Heo H.S., Park H.J., Park Y.-K., Ryu C., Suh D.J., Suh Y.-W., Yim J.-H., Kim S.-S.: Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed. Bioresour. Technol. 101(1, Supplement), S91–S96 (2010) doi: 10.1016/j.biortech.2009.06.003

    Article  Google Scholar 

  57. Mullen C.A., Boateng A.A.: Chemical Composition of Bio-oils Produced by Fast Pyrolysis of Two Energy Crops. Energy Fuels 22(3), 2104–2109 (2008)

    Article  Google Scholar 

  58. Duman G., Okutucu C., Ucar S., Stahl R., Yanik J.: The slow and fast pyrolysis of cherry seed. Bioresour. Technol. 102(2), 1869–1878 (2010)

    Article  Google Scholar 

  59. Radlein D.: Study of levoglucosan production—a review. Fast Pyrolysis Biomass: A Handbook 2, 205–241 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najaf Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, N., Saleem, M., Shahzad, K. et al. Bio-Oil Production from Fast Pyrolysis of Cotton Stalk in Fluidized Bed Reactor. Arab J Sci Eng 40, 3019–3027 (2015). https://doi.org/10.1007/s13369-015-1801-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1801-z

Keywords

Navigation