Skip to main content
Log in

Structural Damage Identification Using Response Surface-Based Multi-objective Optimization: A Comparative Study

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Non-destructive structural damage identification (SDI) and quantification of damage are important issues for any engineering structure. In this study, a comparative assessment of the damage identification capability of different design of experiment (DOE) methods (such as, 2k factorial design, central composite design, Box–Behnken design, D-optimal design and Taguchi’s OA design) used in response surface methodology (RSM) has been carried out. Three different structures (simply supported beam, spring mass damper system and fibre reinforced polymer composite bridge deck) have been used for various single and multiple damage conditions to access the comparative ability of the aforementioned methods in identifying damage addressing two critically important criteria: accuracy and computational efficiency. The study reveals that central composite design and D-optimal design are most recommendable among the five considered DOE methods for SDI. Two different input parameter screening methods (sensitivity analysis using RSM utilizing 2k factorial design and D-optimal design, general sensitivity analysis) have been explored in this study, and their comparative performance is also discussed. It is found that both the methods used in sensitivity analysis for the purpose of input parameter screening in the damage identification process work satisfactorily. Performance of RSM-based damage identification algorithm for different DOE methods under the influence of noise has also been addressed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farrar C.R., Worden K.: An introduction to structural health monitoring. Philos. Trans. R. Soc. A 365, 303–315 (2007)

    Article  Google Scholar 

  2. Doebling, S.W.; Farrar, C.R.; Prime, M.B.; Shevitz, D.W.: Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review. LANL report (LA-13070-MS) (1996)

  3. Fan W., Qiao P.: Vibration-based damage identification methods: a review and comparative study. Struct. Health Monit. 10(1), 83–29 (2011)

    Article  Google Scholar 

  4. Fritzen C.P.: Vibration-based structural health monitoring—concepts and applications. Key Eng. Mater. 293–294, 3–20 (2005)

    Article  Google Scholar 

  5. Huth O., Feltrin G., Maeck J., Kilic N., Motavalli M.: Damage identification using modal data: Experiences on a prestressed concrete bridge. J. Struct. Eng. 131, 1898–1910 (2005)

    Article  Google Scholar 

  6. Perera R., Fang S.E., Ruiz A.: Application of particle swarm optimization and genetic algorithms to multiobjective damage identification inverse problems with modelling errors. Meccanica 45(5), 723–734 (2010)

    Article  MATH  Google Scholar 

  7. Dash K.A., Parhi D.R.: Analysis of an intelligent hybrid system for fault diagnosis in cracked structure. Arab. J. Sci. Eng. 39(2), 1337–1357 (2013)

    Article  Google Scholar 

  8. Sehgal, S.; Kumar, H.: Damage detection using Derringer’s function based weighted model updating method. In: Structural Health Monitoring. Conference Proceedings of the Society for Experimental Mechanics Series vol. 5, pp. 241–253 (2014)

  9. Burczynski T., Beluch W.: The identification of cracks using boundary elements and evolutionary algorithms. Eng. Anal. Boundary Elem. 25(4), 313–322 (2001)

    Article  MATH  Google Scholar 

  10. Bicanic N., Chen H.P.: Damage identification in framed structures using natural frequencies. Int. J. Numer. Methods Eng. 40(23), 4451–4468 (1997)

    Article  MATH  Google Scholar 

  11. Pandey A.K., Biswas M., Samman M.M.: Damage detection from changes in curvature mode shapes. J. Sound Vib. 145, 331–332 (1991)

    Article  Google Scholar 

  12. Zimmerman D.C., Kaouk M.: Structural damage detection using a minimum rank update theory. J. Vib. Acoust. 116, 222–231 (1994)

    Article  Google Scholar 

  13. Pandey A.K., Biswas M.: Damage detection in structures using changes in flexibility. J. Sound Vib. 169, 3–17 (1994)

    Article  MATH  Google Scholar 

  14. Stubbs, N.; Kim, J.T.: Field verification of a non-destructive damage localization and severity estimation algorithm. In: Texas A and M University Report, New Mexico State University (1994)

  15. Banan M.R., Banan M.R., Hjelmstad K.D.: Parameter estimation of structures from static response I: computational aspects. J. Struct. Eng. 120(11), 3243–3258 (1994)

    Article  Google Scholar 

  16. Sanayei M., Saletnik M.J.: Parameter estimation of structures from static strain measurements II: formulation. J. Struct. Eng. 122(5), 555–562 (1996)

    Article  Google Scholar 

  17. Mark, W.; George, D.: A Brief Description of NDT Techniques. Insight NDT Equipment Ltd (2003)

  18. McCann D.M., Forde M.C.: Review of NDT methods in the assessment of concrete and masonry structures. NDT E Int. 34, 71–84 (2001)

    Article  Google Scholar 

  19. Lim Y.Y., Bhalla S., Soh C.K.: Structural identification and damage diagnosis using self-sensing piezo-impedance transducers. Smart Mater. Struct. 15(3), 987–995 (2006)

    Article  Google Scholar 

  20. Naskar, S.; Bhalla, S.: Experimental investigations of metal wire based EMI technique for steel structures. In: Seventh ISSS International Conference on Smart Materials Structures and Systems ISSS (2014)

  21. Chang C.C., Chen L.W.: Detection of the location and size of cracks in the multiple cracked beam by spatial wavelet based approach. Mech. Syst. Signal Process. 19, 139–155 (2005)

    Article  Google Scholar 

  22. Hein H., Feklistova L.: Computationally efficient delamination detection in composite beams using Haar wavelets. Mech. Syst. Signal Process. 25(6), 2257–2270 (2011)

    Article  Google Scholar 

  23. Wu N., Wang Q.: Experimental studies on damage detection of beam structures with wavelet transform. Int. J. Eng. Sci. 49, 253–261 (2011)

    Article  Google Scholar 

  24. Feklistova, L.; Hein, H.: Crack identification in vibrating beams using Haar wavelets and neural networks. In: Applied mechanics and materials: 2013 International Conference on Recent Trends in Materials and Mechanical Engineering, Singapore, 21–23 September (2013)

  25. Katunin A., Przystałka P.: Damage assessment in composite plates using fractional wavelet transform of modal shapes with optimized selection of spatial wavelets. Eng. Appl. Artif. Intell. 30, 73–85 (2014)

    Article  Google Scholar 

  26. Katunin, A.; Przystałka, P.: Meta-optimization method for wavelet-based damage identification in composite structures. FedCSIS 2, 429–438 (2014). doi:10.15439/2014F268

  27. Fu Y.Z., Lu Z.R., Liu J.K.: Damage identification in plates using finite element model updating in time domain. J. Sound Vib. 332(26), 7018–7032 (2013)

    Article  Google Scholar 

  28. Moaveni, B., He, X., Conte, J.P., Callafon, R.A.D.: Damage identification of a composite beam using finite element model updating. Comput. Aided Civil Infrastruct. Eng. 23(5), 339–359 (2008)

  29. Box G.E.P., Wilson K.B.: On the experimental attainment of optimum conditions. J. R. Stat. Soc. Ser. B 13, 1–45 (1951)

    MATH  MathSciNet  Google Scholar 

  30. Myers R.H., Montgomery D.C.: Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2nd edn. Wiley, New York (2002)

    Google Scholar 

  31. Khuri, A.I., Mukhopadhyay, S.: Response surface methodology. Wiley Interdiscip. Rev. Comput. Stat. 2s(2), 128–149 (2010). doi:10.1002/wics.73

  32. Noordin M.Y., Venkatesh V.C., Sharif S., Elting S., Abdullah A.: Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. J. Mater. Process. Technol. 145, 46–58 (2004)

    Article  Google Scholar 

  33. Carpenter, W.C.: Effect of design selection on response surface performance. NASA Contractor Report 4520 (1993)

  34. Lee S.H., Kwak B.M.: Response surface augmented moment method for efficient reliability analysis. Struct. Saf. 28, 261–72 (2006)

    Article  Google Scholar 

  35. Faravelli L.: Response surface approach of reliability analysis. J. Eng. Mech. 115(12), 2763–2781 (1989)

    Article  Google Scholar 

  36. Senthilkumar, N.; Tamizharasan, T.; Gobikannan, S.: Application of response surface methodology and firefly algorithm for optimizing multiple responses in turning AISI 1045 Steel. Arab. J. Sci. Eng. doi:10.1007/s13369-014-1320-3 (2014)

  37. Subramanian M., Sakthivel M., Sudhakaran R.: Modeling and analysis of surface roughness of AL7075-T6 in end milling process using response surface methodology. Arab. J. Sci. Eng. 29(10), 7299–7313 (2014)

    Article  Google Scholar 

  38. Huh J., Haldar A.: Stochastic finite-element-based seismic risk of nonlinear structures. J. Struct. Eng. 127(3), 323–329 (2001)

    Article  Google Scholar 

  39. Gao, X.; Low, T.S.; Chen, S.; Liu, Z.: Structural Robust Design for Torque Optimization of BLDC Spindle Motor Using Response Surface Methodology. IEEE Trans. Magn. 37(4), 2814–2817 (2001)

  40. Guo, Q.T.; Zhang, L.M.: Finite element model updating based on response surface methodology. In: Proceedings of 22nd International Modal Analysis Conference (Dearborn, MI) (2004)

  41. Hemez, F.M.; Wilson, A.C.; Doebling, S.W.: Design of computer experiments for improving an impact test simulation. In: 19th International Modal Analysis Conference, Kissimmee, FL (2001)

  42. Cundy, A.L.; Schultze, J.F.; Hemez, F.M.; Doebling, S.W.; Bingham, D.: Variable screening methods in metamodel design for a large structural dynamics simulation. In: 20th International Modal Analysis Conference, Los Angeles, CA (2002)

  43. Shinn, R.; Hemez, F.M.; Doebling, S.W.: Estimating the error in simulation prediction over the design space. In: 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Norfolk, VA (2003)

  44. Ren W.X., Chen H.B.: Finite element model updating in structural dynamics by using response surface method. Eng. Struct. 32(8), 2455–2465 (2008)

    Article  Google Scholar 

  45. Cundy, A.L.: Use of Response Surface Metamodels in Damage Identification of Dynamic Structures, Master thesis. Virginia Polytechnic Institute and State University (2002)

  46. Cho T.: Prediction of cyclic freeze–thaw damage in concrete structures based on response surface method. Constr. Build. Mater. 21, 2031–40 (2007)

    Article  Google Scholar 

  47. Fang S.E., Perera R.: A response surface based damage identification technique. Smart Mater. Struct. 18, 065009 (2009)

    Article  Google Scholar 

  48. Casciati S.: Response surface models to detect and localize distributed cracks in a complex continuum. J. Eng. Mech. 136(9), 1131–1142 (2010)

    Article  Google Scholar 

  49. Unal, R.; Lepscht, R.A.; McMillin, M.L.: Response surface model building and multidisciplinary optimization using D-optimal designs. In: Annual AIAA/ NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Seventh, St. Louis, MO, USA, pp. 10–31 (1998)

  50. Michael J.B., Norman R.D.: On minimum-point second-order designs. Technometrics 16(4), 613–616 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  51. Mukhopadhyay, T.; Dey, T.K.; Dey, S.; Chakrabarti, A.: Optimization of fiber reinforced polymer web core bridge deck—a hybrid approach. Struct. Eng. Int. (2015) (in Press)

  52. Hamby D.M.: A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monit. Assess. 32, 135–154 (1994)

    Article  Google Scholar 

  53. ABAQUS CAE 6.8. Dassault Systèmes Simulia Corp. (2008)

  54. Elliott A.C., Woodward W.A.: Statistical Analysis Quick Reference Guidebook with SPSS Examples. 1st ed. Sage, London (2007)

    Google Scholar 

  55. Online e-book: Engineering Statistics Handbook, Publisher: NIST/SEMATECH (2003)

  56. Peat J., Barton B.: Medical Statistics: A Guide to Data Analysis and Critical Appraisal. Blackwell, Oxford (2005)

    Book  Google Scholar 

  57. Oztuna D., Elhan A.H., Tuccar E.: Investigation of four different normality tests in terms of type 1 error rate and power under different distributions. Turkish J. Med. Sci. 36(3), 171–6 (2006)

    Google Scholar 

  58. Thode, H.C. Jr.: Testing for Normality. Marcel Dekker, New York. Inc. ISBN 0-8247-9613-6 (2002)

  59. Field A.: Discovering Statistics Using SPSS, 3rd ed. SAGE, London (2009)

    Google Scholar 

  60. Matlab Version 7.12.0.635 (R2011a), MathWorks Inc (2011)

  61. Friswell M.I., Penny J.E.T.: Crack modeling for structural health monitoring. Struct. Health Monit. 1(2), 0139–148 (2002)

    Article  Google Scholar 

  62. Dey T.K., Srivastava I., Khandelwal P.R., Sharma K.U., Chakrabarti A.: Optimum design of FRP rib core bridge deck. Compos. Part B 45(1), 930–938 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmoy Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhopadhyay, T., Dey, T.K., Chowdhury, R. et al. Structural Damage Identification Using Response Surface-Based Multi-objective Optimization: A Comparative Study. Arab J Sci Eng 40, 1027–1044 (2015). https://doi.org/10.1007/s13369-015-1591-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1591-3

Keywords

Navigation