Skip to main content
Log in

A New Kernel-Based Classification Algorithm for Systems Monitoring: Comparison with Statistical Process Control Methods

  • Research Article - Systems Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The paper presents a new Kernel-based monitoring algorithm compared with statistical process control methods, such as DISSIM and MS-PCA and some others methods widely used in process control applications. The proposed algorithm is a modified version of the well known support vector domain description (SVDD). The last one is commonly used for one-classification problems, named also novelty detection. In this paper, we have used a modified SVDD endowed with useful tools to manage multi-classification problems. The proposed classifier is also able to deal with stationary as well as non-stationary data. The principle is based on the dynamic update of the training set through a recursive deletion/insertion procedure according to adequate rules. In order to reduce the computational complexity and improve the rapidity of convergence, the algorithm considers in each run a limited frame of samples for the training process. To prove its effectiveness, the approach is assessed at first on artificially generated data. Then, we have performed a case study applied on chemical process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tax D., Duin R.: Support vector domain description. Pattern Recognit. Lett. 20, 1191–1199 (1999)

    Article  Google Scholar 

  2. Tax D., Duin R.: Support vector data description. Mach. Learn. 54, 45–66 (2004)

    Article  MATH  Google Scholar 

  3. Hua X., Ding S.: Incremental learning algorithm for support vector data description. J. Softw. 6(7), 1166–1173 (2011)

    Article  Google Scholar 

  4. Tavakkoli, A.; Nicolescu, M.; Nicolescu, M.; Bebis, G.: Incremental SVDD training: improving efficiency of background modeling in videos. In: Proceedings of the International Conference on Signal and Image Processing, Kailua-Kona, Hawaii (August 2008)

  5. Osuna, E.; Freund, R.; Girosi, F.: Improved training algorithm for support vector machines. In: Proceeding of Neural Networks in Signal Processing (IEEE NNSP’97), Amelia Island (September 1997)

  6. Jianhua, X.: Constructing a fast algorithm for multi-label classification with support vector data description. In: Proceedings of the 2010 IEEE International Conference on Granular Computing (GRC ’10), IEEE Computer Society Washington, DC, USA (2010)

  7. Vapnik V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  8. Camci F., Chinnam R.B.: General support vector representation machine for one-class classification of non-stationary classes. Pattern Recognit. 41(10), 3021–3034 (2008)

    Article  MATH  Google Scholar 

  9. Bottou, L.; Cortes, C.; Denker, J.; Drucker, H.; Guyon, I.; Jackel, L.D.; LeCun, Y.; Muller, U.; Sackinger, E.; Simard, P.; Vapnik, V.: Comparison of classifier methods: a case study in handwritten digit recognition. In: Proceedings of the International Conference on Pattern Recognition, pp. 77–87 (1994)

  10. Cortes C., Vapnik V.: Support vector network. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  11. Friedman J.: Another Approach to Polychotomous Classification. Technical Report. Department of Statistics, Stanford University, Stanford, CA (1996)

    Google Scholar 

  12. Platt J.C., Cristianini N, Shawe-Taylor J.: Large margin DAGs for multiclass classification. Proc. Neural Inform. Process. Syst. Conf. 12, 547–553 (2000)

    Google Scholar 

  13. Sachs A., Thiel C., Schwenker F.: One-class support-vector machines for the classification of bioacoustic time series. Int. J. Artif. Intell. Mach. Learn. 6(4), 29–34 (2006)

    Google Scholar 

  14. Amadou, B.H.; Lecoeuche, S.; Maouche, S.: AUDyC neural network using a new Gaussian densities merge mechanism. In: Proceedings of the 7th International Conference on Adaptive and Natural Computing Algorithms(ICANNGA’05), Coimbra, Portugal, pp. 155–158 (2005)

  15. Downs J.J., Vogel E.F.: A plant-wide industrial process control problem. Comput. Chem. Eng. 17(3), 245–255 (1993)

    Article  Google Scholar 

  16. Kano M., Nagao K., Hasebe S., Hashimoto I., Ohno H., Strauss R., Bakshi B.: Comparison of multivariate statistical process monitoring methods with applications to the eastman challenge problem. Comput. Chem. Eng. 26(2), 161–174 (2002)

    Article  Google Scholar 

  17. Lee J.-M., Yoo C., Lee I.-B.: Statistical monitoring of dynamic processes based on dynamic independent component analysis. Chem. Eng. Sci. 59(14), 2995–3006 (2004)

    Article  Google Scholar 

  18. Kruger U., Zhou Y., Irwin G.: Improved principal component monitoring of large-scale processes. J. Process Control 14(8), 879–888 (2004)

    Article  Google Scholar 

  19. Chiang L.H., Pell R.J.: Genetic algorithms combined with discriminant analysis for key variable identification. J. Process Control 14(2), 143–155 (2004)

    Article  Google Scholar 

  20. Lyman P., Georgakis C.: Plant-wide control of the tennessee Eastman problem. Comput. Chem. Eng. 19(3), 321–331 (1995)

    Article  Google Scholar 

  21. Chiang L.H., Russell E.L., Braatz R.D.: Fault Detection and Diagnosis in Industrial Systems. Springer, New York (2001)

    Book  MATH  Google Scholar 

  22. Verron S., Tiplica T., Kobi A.: Fault detection and identification with a new feature selection based on mutual information. J. Process Control 18(5), 479–490 (2008)

    Article  Google Scholar 

  23. Ge Z.Q., Yang C.J., Song Z.H.: Improved kernel PCA-based monitoring approach for nonlinear processes. Chem. Eng. Sci. 64(9), 2245–2255 (2009)

    Article  Google Scholar 

  24. Zhao C., Wang F., Lu N., Jia M.: Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes. J. Process Control 17(9), 728–741 (2007)

    Article  Google Scholar 

  25. Zhang R., Wang W.J., Ma Y.C.: Approximations of the standard principal components analysis and kernel PCA. Expert Syst. Appl. 37(9), 6531–6537 (2010)

    Article  Google Scholar 

  26. Chen J., Liu K.-C.: On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chem. Eng. Sci. 57(1), 63–75 (2002)

    Article  Google Scholar 

  27. Joner M.D. Jr., Woodall W.H., Reynolds M.R.: A one-sided MEWMA chart for health surveillance. Qual. Reliability Eng. Int. 24(5), 503–518 (2008)

    Article  Google Scholar 

  28. Bersimis S., Psarakis S., Panaretos J.: Multivariate statistical process control charts: an overview. Qual. Reliability Eng. Int. 23(5), 517–543 (2007)

    Article  Google Scholar 

  29. Zhang, G.; Li, N.; Li, S.: A modified multivariate EWMA control chart for monitoring process small shifts. In: Proceedings of International Conference on Modeling, Identification and Control, Shanghai, China, pp. 26–29. (June 2011)

  30. Deng Z., Shingo M., Kotaro H.: Robust intelligent PCA-based face recognition framework using GNP-fuzzy data mining. IEEJ Trans. Elect. Electron. Eng. 8(3), 253–262 (2013)

    Article  Google Scholar 

  31. Diehl C.P.: SVM incremental learning, adaptation and optimization. Proc. Int. Joint Conf. Neural Netw. 4, 2685–2690 (2003)

    Google Scholar 

  32. Zhi-Qiang G., Chun-Jie Y., Zhi-Huan S.: Research and application of small shifts detection method based on MEWMA-PCA. Inform. Control 36(5), 650–656 (2007)

    Google Scholar 

  33. Kanoa M., Nagao K., Hasebe S., Hashimoto I., Ohno H., Straussc R., Bakshi Bhavik R.: Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem. Comput. Chem. Eng. 26, 161–174 (2002)

    Article  Google Scholar 

  34. Kanoa M., Nagao K., Hasebe S., Hashimoto I., Ohno H., Straussc R., Bakshi Bhavik R.: Comparison of statistical process monitoring methods: application to the Eastman challenge problem. Comput. Chem. Eng. 24, 175–181 (2000)

    Article  Google Scholar 

  35. Hossein P., Salman H., Karim A.: Improved structure of PNN using PCA in transformer fault diagnostic. Arabian J. Sci. Eng. 24, 1–7 (2014). doi:10.1007/s13369-014-1004-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foued Theljani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theljani, F., Laabidi, K., Zidi, S. et al. A New Kernel-Based Classification Algorithm for Systems Monitoring: Comparison with Statistical Process Control Methods. Arab J Sci Eng 40, 645–658 (2015). https://doi.org/10.1007/s13369-014-1519-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1519-3

Keywords

Navigation