Skip to main content
Log in

Investigating the Surface Roughness of SLS Fabricated Glass-Filled Polyamide Parts Using Response Surface Methodology

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Selective laser sintering (SLS) is an additive manufacturing process, which has become popular for the production of full functional end-user parts as well as prototypes. Presently, many sectors particularly aerospace, automotive and biomedical are using 3D solid models (prototypes) for visualization, kinematic testing or to fulfil other functional demands. Therefore, SLS parts should have good surface quality (i.e. surface roughness) to fulfil the demands of these sectors. Surface roughness of the SLS fabricated parts relies on the various input process parameters. Hence, this study investigates the influence of key contributing factors (i.e. bed temperature, laser power, scan speed, scan spacing and scan length) on the surface roughness of glass-filled polyamide parts. Five factors, three-level, and face-centred central composite design of experiment were used to collect data, and response surface methodology was employed to investigate the effects and interactions of selected input process parameters. It has been found that scan spacing followed by laser power is the most significant factor, which contributes the most to improve surface roughness. Furthermore, the optimum values of different parameters were obtained and verified by conducting confirmation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheah C.M., Chua C.K., Lee C.W., Feng C., Totong K.: Rapid prototyping and tooling techniques: a review of applications for rapid investment casting. Int. J. Adv. Manuf. Technol. 25(3–4), 308–320 (2005)

    Article  Google Scholar 

  2. Negi, S.; Dhiman, S.; Sharma, R.K.: Basics and applications of rapid prototyping medical models. Rapid Prototyp. J. 20(3), 256–267 (2014)

  3. Campbell I., Bourell D., Gibson I.: Additive manufacturing: rapid prototyping comes of age. Rapid Prototyp. J. 18(4), 255–258 (2012)

    Article  Google Scholar 

  4. ASTM International: standard terminology for additive manufacturing technologies: F2792-12a. US (2012)

  5. Goodridge R.D., Shofner M.L., Hague R.J.M., Mcclelland M., Schlea M.R., Johnson R.B., Tuck C.J.: Processing of a polyamide-12/carbon nano fibre composite by laser sintering. Polym. Test. 30(1), 94–100 (2011)

    Article  Google Scholar 

  6. Mazzoli A., Moriconi G., Pauri M.G.: Characterization of an aluminum-filled polyamide powder for applications in selective laser sintering. Mater. Des. 28(3), 993–1000 (2007)

    Article  Google Scholar 

  7. Dotchev K., Yusoff W.: Recycling of polyamide 12 based powders in the laser sintering process. Rapid Prototyp. J. 15(3), 192–203 (2009)

    Article  Google Scholar 

  8. Calignano F., Manfredi D., Ambrosio E.P., Iuliano L., Fino P.: Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int. J. Adv. Manuf. Technol. 67(9–12), 2743–2751 (2013)

    Article  Google Scholar 

  9. Bacchewar P.B., Singhal S.K., Pandey P.M.: Statistical modelling and optimization of surface roughness in the selective laser sintering process. J. Eng. Manuf. 221(1), 35–52 (2007)

    Article  Google Scholar 

  10. Su X., Yang Y., Xiao D., Luo Z.: An investigation into direct fabrication of fine structured components by selective laser melting. Int. J. Adv. Manuf. Technol. 64(9–12), 1231–1238 (2012)

    Google Scholar 

  11. Sachdeva A., Singh S., Sharma V.S.: Investigating surface roughness of parts produced by SLS process. Int. J. Adv. Manuf. Technol. 64(9–12), 1505–1516 (2012)

    Google Scholar 

  12. Yang Y., Fuh J.Y.H., Loh H.T., Wong Y.S.: Multi-orientational deposition to minimize support in the layered manufacturing process. J. Manuf. Syst. 22(2), 116–129 (2003)

    Article  Google Scholar 

  13. Tang Y., Loh H.T., Wong Y.S., Fuh J.Y.H., Lu L., Wang X.: Direct laser sintering of a copper-based alloy for creating three-dimensional metal parts. J. Mater. Process. Technol. 140(1–3), 368–372 (2003)

    Article  Google Scholar 

  14. Tumer I.Y., Thompson D.C., Wood K.L., Crawford R.H.: Characterization of surface fault patterns with application to a layered manufacturing process. J. Manuf. Syst. 17(1), 23–36 (1995)

    Article  Google Scholar 

  15. Tang Y., Fuh J.Y.H., Loh H.T., Wong Y.S., Lu L.: Direct laser sintering of silica sand. Mater. Des. 24(8), 623–629 (2003)

    Article  Google Scholar 

  16. Strano, G.; Hao, L.; Everson R.M.; Evans K.E.: Multi-objective optimization of selective laser sintering processes for surface quality and energy saving. J. Eng. Manuf. doi:10.1177/0954405411402925 (2011)

  17. Ning Y., Song Y.S., Fuh J.Y.H.: Effect and control of hatch length on material properties in the direct metal laser sintering process. J. Eng. Manuf. 219(1), 15–25 (2005)

    Article  Google Scholar 

  18. Wang Y., Bergstr J., Burman C.: Characterization of an iron-based laser sintered material. J. Mater. Process. Technol. 172(1), 77–87 (2006)

    Article  Google Scholar 

  19. Rossi S., Deflorian F., Venturini F.: Improvement of surface finishing and corrosion resistance of prototypes produced by direct metal laser sintering. J. Mater. Process. Technol. 148(3), 301–309 (2004)

    Article  Google Scholar 

  20. Song Y.A.K., Koenig W.: Experimental study of the basic process mechanism for direct selective laser sintering of low-melting metallic powder. CIRP Ann. Manuf. Technol. 46(1), 127–130 (1997)

    Article  Google Scholar 

  21. Lonardo P.M., Bruzzone A.A.: Measurement and topography characterisation of surfaces produced by selective laser sintering. CIRP Ann. Manuf. Technol. 49(1), 427–430 (2000)

    Article  Google Scholar 

  22. Masood S.H., Rattanawong W., Iovenitti P.: A generic algorithm for a best part orientation system for complex parts in rapid prototyping. J. Mater. Process. Technol. 139(1–3), 110–116 (2003)

    Article  Google Scholar 

  23. Senthilkumaran K., Pandey P.M., Rao P.V.M.: Influence of building strategies on the accuracy of parts in selective laser sintering. Mater. Des. 30(8), 2946–2954 (2009)

    Article  Google Scholar 

  24. Dupin S., Lame O., Barres C., Charmeau J.Y.: Microstructural origin of physical and mechanical properties of polyamide 12 processed by laser sintering. Eur. Polym. J. 48(9), 1611–1621 (2012)

    Article  Google Scholar 

  25. Arumugam S., Sriram G., Rajmohan T.: Multi-response optimization of epoxidation process parameters of rapeseed oil using response surface methodology-based desirability analysis. Arab. J. Sci. Eng. 39, 2277–2287 (2014)

    Article  Google Scholar 

  26. Matlob A.S., Kamarudin R.A., Jubri Z., Ramli Z.: Using the response surface methodology to optimize the extraction of silica and alumina from coal fly ash for the synthesis of Zeolite Na-A. Arab. J. Sci. Eng. 37, 27–40 (2012)

    Article  Google Scholar 

  27. Niu H., Li Y., Lei Y., Zhang L., Peng J., Guo S.: Microwave drying of anthracite: a parameter optimized by response surface methodology. Arab. J. Sci. Eng. 37, 65–73 (2012)

    Article  Google Scholar 

  28. Aldahdooh M.A.A., Bunnori N.M., Johari M.A.M.: Evaluation of ultra-high performance fiber reinforced concrete binder content using the response surface method. Mater. Des. 52, 957–965 (2013)

    Article  Google Scholar 

  29. Acherjee B., Kuar A.S., Mitra S., Misra D.: Modeling and analysis of simultaneous laser transmission welding of polycarbonates using an FEM and RSM combined approach. Opt. Laser Technol. 44(4), 995–1006 (2012)

    Article  Google Scholar 

  30. Balachandran M., Devanathan S., Muraleekrishnan R., Bhagawan S.S.: Optimizing properties of nanoclay-nitrile rubber (NBR) composites using face centred central composite design. Mater. Des. 35, 854–862 (2012)

    Article  Google Scholar 

  31. Montgomery D.C.: Design and Analysis of Experiment. Wiley, NewYork (1997)

    Google Scholar 

  32. Mourabet, M.; Rhilassi, A.E.; Boujaady, H.E.; Ziatni, M.B.; Hamri, R.E.; Taitai, A.: Removal of fluoride from aqueous solution by adsorption on hydroxyapatite (HAp) using response surface methodology. J. Saudi Chem. Soc. doi:10.1016/j.jscs.2012.03.003 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushant Negi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negi, S., Dhiman, S. & Sharma, R.K. Investigating the Surface Roughness of SLS Fabricated Glass-Filled Polyamide Parts Using Response Surface Methodology. Arab J Sci Eng 39, 9161–9179 (2014). https://doi.org/10.1007/s13369-014-1434-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1434-7

Keywords

Navigation