Skip to main content
Log in

A Study on Integration of Lot Sizing and Flow Shop Lot Streaming Problems

  • Research Article - Systems Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Lot streaming is a technique for splitting jobs, each consisting of identical items, into sublots to allow them to overlap on consecutive machines in multi-stage production systems. Through lot streaming, production can be accelerated and a significant decrease in makespan can be achieved. However, all lot streaming research assumes that the number of identical items of the product on each machine is given in advance. In other words, the lot sizing problem is not integrated into the lot streaming problem. Moreover, all lot streaming research assumes that machines are always available, in other words; no breakdowns or scheduled maintenance are allowed in which this is unrealistic. In addition, variable sublot-type seldom is considered in previous studies. In this paper, we develop mixed-integer linear mathematical models for the integration of lot sizing and lot streaming problems where machines are unavailable because they are undergoing preventive maintenance. All sublot types (equal, consistent, and variable) are considered in the proposed models. Proposed models are tested by numerical examples, and surprising results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li Z., Ierapetritou M.G.: Production planning and scheduling integration through augmented lagrangian optimization. Comput. Chem. Eng. 34(6), 996–1006 (2010)

    Article  Google Scholar 

  2. Yan H., Zhang X.: A case study on integrated production planning and scheduling in a three-stage manufacturing system. IEEE Trans. Autom. Sci. Eng. 4(1), 86–92 (2007)

    Article  Google Scholar 

  3. Lasserre J.: An integrated model for job-shop planning and scheduling. Manag. Sci. 38(8), 1201–1211 (1992)

    Article  MATH  Google Scholar 

  4. Potts, C.N.; Van Wassenhove, L.N.: Integrating scheduling with batching and lot-sizing: a review of algorithms and complexity. J. Oper. Res. Soc. 43(5), 395–406 (1992)

  5. Mortezaei N., Zulkifli N., Hong T.S., Yusuff R.M.: Multi-objective aggregate production planning model with fuzzy parameters and its solving methods. Life Sci. J. 10(4), 2406–2414 (2013)

    Google Scholar 

  6. Yan H., Xia Q., Zhu M., Liu X., Guo Z.: Integrated production planning and scheduling on automobile assembly lines. Iie Trans. 35(8), 711–725 (2003)

    Article  Google Scholar 

  7. Palaniappan P.K., Jawahar N.: A genetic algorithm for simultaneous optimisation of lot sizing and scheduling in a flow line assembly. Int. J. Prod. Res. 49(2), 375–400 (2011)

    Article  MATH  Google Scholar 

  8. Ramezanian R., Saidi-Mehrabad M., Fattahi P.: MIP formulation and heuristics for multi-stage capacitated lot-sizing and scheduling problem with availability constraints. J. Manuf. Syst. 32(2), 392–401 (2013)

    Article  Google Scholar 

  9. Kalir A.A., Sarin S.C.: Evaluation of the potential benefits of lot streaming in flow-shop systems. Int. J. Prod. Econ. 66(2), 131–142 (2000). doi:10.1016/S0925-5273(99)00115-2

    Article  Google Scholar 

  10. Zhang W., Yin C., Liu J., Linn R.J.: Multi-job lot streaming to minimize the mean completion time in m-1 hybrid flowshops. Int. J. Prod. Econ. 96(2), 189–200 (2005)

    Article  Google Scholar 

  11. Kalir A.A., Sarin S.C.: Constructing near optimal schedules for the flow-shop lot streaming problem with sublot-attached setups. J. Comb. Optim. 7(1), 23–44 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sarin S.C., Jaiprakash P.: Flow Shop Lot Streaming Problems. Springer, Berlin (2007)

    Book  Google Scholar 

  13. Baker K., Pyke D.: Solution procedures for the lot-streaming problem. Decis. Sci. 21(3), 475–491 (1990)

    Article  Google Scholar 

  14. Hoque M.A., Goyal S.K.: On lot streaming in multistage production systems. Int. J. Prod. Econ. 95(2), 195–202 (2005)

    Article  Google Scholar 

  15. Tseng C., Liao C.: A discrete particle swarm optimization for lot-streaming flowshop scheduling problem. Eur. J. Oper. Res. 191(2), 360–373 (2008)

    Article  MATH  Google Scholar 

  16. Glass C.A., Gupta J.N.D., Potts C.N.: Lot streaming in three-stage production processes. Eur. J. Oper. Res. 75(2), 378–394 (1994)

    Article  MATH  Google Scholar 

  17. Feldmann M., Biskup D.: Lot streaming in a multiple product permutation flow shop with intermingling. Int. J. Prod. Res. 46(1), 197–216 (2008)

    Article  MATH  Google Scholar 

  18. Kalir A.A., Sarin S.C.: A near-optimal heuristic for the sequencing problem in multiple-batch flow-shops with small equal sublots. Omega 29(6), 577–584 (2001)

    Article  Google Scholar 

  19. Baker K.R., Jia D.: A comparative study of lot streaming procedures. Omega 21(5), 561–566 (1993)

    Article  Google Scholar 

  20. Biskup D., Feldmann M.: Lot streaming with variable sublots: an integer programming formulation. J. Oper. Res. Soc. 57(3), 296–303 (2005)

    Article  MathSciNet  Google Scholar 

  21. Trietsch D., Trietsch D., Trietsch D.: Basic techniques for lot streaming. Oper. Res. 41(6), 1065–1076 (1993)

    Article  MATH  Google Scholar 

  22. Chiu H., Chang J., Lee C.: Lot streaming models with a limited number of capacitated transporters in multistage batch production systems. Comput. Oper. Res. 31(12), 2003–2020 (2004)

    Article  MATH  Google Scholar 

  23. Chang J.H., Chiu H.N.: A comprehensive review of lot streaming. Int. J. Prod. Res. 43(8), 1515–1536 (2005)

    Article  Google Scholar 

  24. Glass C.A., Possani E.: Lot streaming multiple jobs in a flow shop. Int. J. Prod. Res. 49(9), 2669–2681 (2011)

    Article  MATH  Google Scholar 

  25. Defersha F.M., Chen M.: A hybrid genetic algorithm for flowshop lot streaming with setups and variable sublots. Int. J. Prod. Res. 48(6), 1705–1726 (2010)

    Article  MATH  Google Scholar 

  26. Defersha F.M., Chen M.: Mathematical model and parallel genetic algorithm for hybrid flexible flowshop lot streaming problem. Int. J. Adv. Manuf. Technol. 62(1–4), 249–265 (2012)

    Article  Google Scholar 

  27. Behnamian J., Zandieh M.: Earliness and tardiness minimizing on a realistic hybrid flowshop scheduling with learning effect by advanced metaheuristic. Arab. J. Sci. Eng. 38(5), 1229–1242 (2013)

    Article  MathSciNet  Google Scholar 

  28. Fadaei M., Zandieh M.: Scheduling a bi-objective hybrid flow shop with sequence-dependent family setup times using metaheuristics. Arab. J. Sci. Eng. 38(8), 2233–2244 (2013)

    Article  Google Scholar 

  29. Hall N.G., Laporte G., Selvarajah E., Sriskandarajah C.: Scheduling and lot streaming in flowshops with no-wait in process. J. Sched. 6(4), 339–354 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kim K., Jeong I.: Flow shop scheduling with no-wait flexible lot streaming using an adaptive genetic algorithm. Int. J. Adv. Manuf. Technol. 44(11–12), 1181–1190 (2009)

    Article  Google Scholar 

  31. Marimuthu S., Ponnambalam S., Jawahar N.: Evolutionary algorithms for scheduling m−1 machine flow shop with lot streaming. Robot. Comput. Integr. Manuf. 24(1), 125–139 (2008)

    Article  Google Scholar 

  32. Martin C.H.: A hybrid genetic algorithm/mathematical programming approach to the multi-family flowshop scheduling problem with lot streaming. Omega 37(1), 126–137 (2009)

    Article  Google Scholar 

  33. Nejati M., Mahdavi I., Hassanzadeh R., Mahdavi-Amiri N., Mojarad M.: Multi-job lot streaming to minimize the weighted completion time in a hybrid flow shop scheduling problem with work shift constraint. Int. J. Adv. Manuf. Technol. 70(1–4), 501–514 (2014)

    Article  Google Scholar 

  34. Pan Q., Fatih Tasgetiren M., Suganthan P.N., Chua T.J.: A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Inf. Sci. 181(12), 2455–2468 (2011)

    Article  Google Scholar 

  35. Pan Q., Suganthan P.N., Liang J.J., Tasgetiren M.F.: A local-best harmony search algorithm with dynamic sub-harmony memories for lot-streaming flow shop scheduling problem. Expert Syst. Appl. 38(4), 3252–3259 (2011)

    Article  Google Scholar 

  36. Ventura J.A., Yoon S.: A new genetic algorithm for lot-streaming flow shop scheduling with limited capacity buffers. J. Intell. Manuf. 24(6), 1185–1196 (2013)

    Article  Google Scholar 

  37. Vijaychakaravarthy G., Marimuthu S., Sait A.N.: Comparison of improved sheep flock heredity algorithm and artificial bee colony algorithm for lot streaming in m-machine flow shop scheduling. Arab. J. Sci. Eng. 39(5), 4285–4300 (2014)

    Article  Google Scholar 

  38. Mortezaei, N.; Zulkifli, N.: Integration of lot sizing and flow shop scheduling with lot streaming. J. Appl. Math., Article ID 216595, 9 pages. doi:10.1155/2013/216595 (2013)

  39. Cheng M., Mukherjee N., Sarin S.: A review of lot streaming. Int. J. Prod. Res. 51(23–24), 7023–7046 (2013)

    Article  Google Scholar 

  40. Ramasesh R.V., Fu H., Fong D.K., Hayya J.C.: Lot streaming in multistage production systems. Int. J. Prod. Econ. 66(3), 199–211 (2000)

    Article  Google Scholar 

  41. Riane F., Artiba A., Iassinovski S.: An integrated production planning and scheduling system for hybrid flowshop organizations. Int. J. Prod. Econ. 74(1), 33–48 (2001)

    Article  Google Scholar 

  42. Yang C., Chou J.H, Chang C.K: Hybrid Taguchi-based particle swarm optimization for flowshop scheduling problem. Arab. J. Sci. Eng. 39(3), 2393–2412 (2014)

    Article  Google Scholar 

  43. Yu X., Yulin Z.: Single machine scheduling with aging effect and upper-bounded actual processing times. Arab. J. Sci. Eng. 39(2), 1489–1495 (2014)

    Article  MathSciNet  Google Scholar 

  44. Hadda H.: A polynomial-time approximation scheme for the two machine flow shop problem with several availability constraints. Optim. Lett. 6(3), 559–569 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  45. Berlec T., Starbek M.: Predicting order due date. Arab. J. Sci. Eng. 37(6), 1751–1766 (2012)

    Article  Google Scholar 

  46. Brucker P., Sotskov Y.N., Werner F.: Complexity of shop-scheduling problems with fixed number of jobs: a survey. Math. Methods Oper. Res. 65, 461–481 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  47. Demir Y., İşleyen S.K.: An effective genetic algorithm for flexible job-shop scheduling with overlapping in operations. Int. J. Prod. Res. 52(13), 3905–3921 (2014)

    Article  Google Scholar 

  48. Potts C., Baker K.: Flow shop scheduling with lot streaming. Oper. Res. Lett. 8(6), 297–303 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  49. Mortezaei N., Zulkifli N., Hong T.S, Yusuff R.M: Lot streaming and preventive maintenance in a multiple product permutation flow shop with intermingling. Appl. Mech. Mater. 564(2014), 689–693 (2014)

    Article  Google Scholar 

  50. Allahverdi A., Ng C., Cheng T., Kovalyov M.: A survey of scheduling problems with setup times or costs. Eur. J. Oper. Res. 187(3), 985–1032 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  51. Sadrzadeh A.: Development of both the AIS and PSO for solving the flexible job shop scheduling problem. Arab. J. Sci. Eng. 38(12), 3593–3604 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Mortezaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortezaei, N., Zulkifli, N. A Study on Integration of Lot Sizing and Flow Shop Lot Streaming Problems. Arab J Sci Eng 39, 9283–9300 (2014). https://doi.org/10.1007/s13369-014-1416-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1416-9

Navigation