Skip to main content
Log in

Heat Transfer Suppression in Flow Around a Rotating Circular Cylinder at High Prandtl Number

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Forced convection heat transfer across a 2D circular cylinder rotating at constant speed is investigated. Numerical simulations are carried out at constant values of Reynolds number in the range of 80–160. The non-dimensional rotation rate, α, is examined up to a maximum value of 5.3 for Prandtl number (Pr) 7. At constant Reynolds number, heat transfer suppression kicks off even at lower rotation rates contrary to the systems with lower values of Pr. Moreover, the heat transfer suppression parameter in such cases saturates at almost the double value at intermediate rotation rates as compared to the systems with low Pr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c p :

Specific heat of the fluid [J kg−1 K −1]

C D :

Total drag coefficient (C D = C DPC DV)

C DP :

Pressure drag coefficient \({(=F_{\rm DP} /\frac{1}{2}\rho u_\infty ^2)}\)

\({C_{\rm D\nu}}\) :

Viscous drag coefficient \({(=F_{\rm DV} /\frac{1}{2}\rho u_\infty ^2)}\)

C L :

Total lift coefficient \({(C_{\it L} =C_{\rm LP} +C_{\rm LV})}\)

C LP :

Pressure lift coefficient \({(=F_{\rm LP} /\frac{1}{2}\rho u_\infty ^2 )}\)

\({C_{\rm L\nu}}\) :

Viscous lift coefficient \({(=F_{\rm LV} /\frac{1}{2}\rho u_\infty ^2)}\)

D :

Diameter of the circular cylinder (m)

\({\bar{h}}\) :

Local heat transfer coefficient (Wm−2 K−1)

h :

Average heat transfer coefficient (Wm−2 K−1)

k :

Thermal conductivity of fluid (Wm−1 K−1)

ω :

Constant angular velocity of cylinder surface

Nu :

Average Nusselt number (= hD/k) (−)

\({\overline{\it Nu}}\) :

Time-averaged local Nusselt number

Pr :

Prandtl number (−)

P :

Non-dimensional pressure \({(=p^{\ast}/pU_\infty ^2 )}\), (−)

p*:

Pressure (Pa)

Re :

Reynolds number (= pU D/μ), (−)

t :

Time (s)

T :

Temperature of the fluid at the inlet (K)

T w :

Constant wall temperature at the surface of cylinder

U :

Non-dimensional stream-wise velocity (= u/U ), (−)

U :

Free-stream velocity (ms−1)

u :

Stream-wise velocity (ms−1)

V :

Non-dimensional cross stream velocity (= v/U )

v :

Cross-stream velocity (ms−1)

x :

Stream-wise dimension of coordinates (m)

X:

Non-dimensional stream-wise dimension of coordinates (= x/D)

Y:

Non-dimensional cross-stream dimension of co-ordinates (= y/D)

φ :

Angle measure in clockwise direction

α :

Non-dimensional rotation rate

θ :

Non-dimensional temperature (\({=\frac{T-T_\infty }{T_w -T_\infty }}\))

\({\rho}\) :

Density of fluid

μ :

Viscosity of fluid

\({\tau}\) :

Non-dimensional time (\({=\frac{tU_\infty }{D}}\))

w:

Surface of the cylinder

References

  1. Lange, C.F,; Durst F.; Breuer M.: Momentum and heat transfer from cylinders in laminar cross flow at 104 6 Re 6 200. Int. J. Heat Mass Transf. 41,3409–3430 (1998)

  2. Barkley, D.; Henderson D.: Three dimensional floquet stability analysis of the wake of the circular cylinder. J. Fluid Mech. 322,215–241 (1996)

  3. Williamson C.H.K.: Vortex dynamics in the cylinder wake. Ann. Rev. Fluid Mech. 28, 477–539 (1996)

    Article  Google Scholar 

  4. Baranyi L.: Computation of unsteady momentum and heat transfer from a fixed circular cylinder in laminar flow. J. Comput. App. Mech. 4, 13–25 (2003)

    MATH  Google Scholar 

  5. Roshko A.: Experiments on the flow past a circular cylinder at very high Reynolds number. J. Fluid Mech. 10, 345–356 (1961)

    Article  MATH  Google Scholar 

  6. Coutanceau, M.; Me’nard C.: Influence of rotation on the near wake development behind an impulsively started circular cylinder. J. Fluid Mech. 158,399–446 (1985)

  7. Badr, H.M.; Dennis S.C.R.: Time-dependent viscous flow past an impulsively started rotating and translating circular cylinder. J. Fluid Mech. 158,447–488 (1985)

  8. Badr, H.M.; Coutanceau, M.; Dennis S.C.R.; Menard, C.: Unsteady flow past a rotating cylinder at Reynolds numbers 103 and 104. J. Fluid Mech. 220,459–484 (1990)

  9. Tokumaru, P.T.; Dimotakis, P.E.: Rotary oscillation control of cylinder wake. J. Fluid Mech. 224,77–90 (1991)

  10. Tokumaru, P.T.; Dimotakis, P.E.: The lift of a cylinder executing rotary motions in a uniform flow. J. Fluid Mech. 255,1–10 (1993)

  11. Kendoush A.A.: An approximate solution of the convection heat transfer from an isothermal rotating cylinder. Int. J. Heat Fluid Flow 17, 439–441 (1996)

    Article  Google Scholar 

  12. Park, J.; Kwon, K.; Choi, H.: Numerical solution of flow past a circular cylinder at Reynolds number upto 160. KSME Int. J. 12,1200–1205 (1998)

  13. Kang, S.; Choi, H.: Laminar flow past a rotating cylinder. Phys. Fluids. 11,3312–3320 (1999)

  14. Mahfouz, F.M.; Badr, H.M.: Forced convection from a rotationally oscillating cylinder placed in a uniform stream. Int. J. Heat Mass Transf. 43,3093–3104 (2000)

  15. Nazar, R.; Amin N.; Pop I.: On the mixed convection boundary layer flow about a solid sphere with constant surface temperature. Arab. J. Sci. Eng. 27(2C), 117–135 (2002)

  16. Stojkovic, D.; Breuer, M., Durst, F.: Effect of high rotation rates on the laminar flow around a circular cylinder. Phys. Fluids 14,3160–3178 (2002)

  17. Mittal, S.; Kumar, B.: Flow past a rotating cylinder. J. Fluid Mech. 476,303–334 (2003)

  18. Stojkovic, D.; Schon, P.; Breuer, M., Durst, F.: On the new vortex shedding mode past arotating circular cylinder. Phys. Fluids 15,1257–1260 (2003)

  19. Sanitjai, S.; Goldstein, R.J.: Forced convection heat transfer from a circular cylinder in crossflow to air and liquids. Int. J. Heat Mass Transf. 47,4795–4805 (2003)

  20. Ishak, A.; Nazar, R.; Pop, I.: Unsteady mixed convection boundary layer flow due to a stretching vertical surface. Arab. J. Sci. Eng. 31(2B), 165–182 (2006)

  21. Mehrabian, M.A.: Heat transfer and pressure drop characteristics of cross flow of air over a circular tube in isolation and/or in a tube tank. Arab. J. Sci. Eng. 32(2B), 365–376 (2007)

  22. Yan, Y.Y.; Zu, Y.Q.: Numerical simulation of heat transfer and fluid flow pasta rotating isothermal cylinder—a LBM approach. Int. J. Heat Mass Transf. 51, 2519–2536 (2008)

  23. Bharti, R.P.; Chhabra, R.P.; Eswaran, V.: A numerical study of the steady forced convection heat transfer from an unconfined circular cylinder. Heat Mass Transf. 43,639–648 (2007)

  24. Khilesh, A.; Sahu, K.; Chhabra, R.P., Eswaran, V.: Effects of Reynolds and Prandtl numbers on heat transfer from a square cylinder in the unsteady flow regime. Int. J. Heat Mass Transf. 52,839–850 (2008)

  25. El Akoury, R.; Braza, M.; Perrin, R.; Harran, G.; Hoarau, Y.: The three-dimensional transition in the flow around a rotating cylinder. J. Fluid Mech. 607,1–11 (2008)

  26. Paramane, S.B.; Sharma, A.: Numerical investigation of heat and fluid flow across a rotating circular cylinder maintained at constant temperature in 2-D laminar flow regime. Int. J. Heat Mass Transf 52,3205–3216 (2009)

  27. Paramane, S.B.; Sharma, A.: Heat and fluid flow across a rotating cylinder dissipating uniform heat flux in 2D laminar flow regime. Int. J. Heat Mass Transf 53,4672–4683 (2010)

  28. Paramane, V.K.; Bharti, R.P.; Chhabra, R.P.: Two-dimensional unsteady forced convection heat transfer in power-law fluids from a cylinder. Int. J. Heat Mass Transf 53,4152–4167 (2010)

  29. Sarkar, S.; Dalal, A.; Biswas, G.: Unsteady wake dynamics and heat transfer in forced and mixed convection past a circular cylinder in cross flow for high Prandtl numbers. Int. J. Heat Mass Transf 54,3536–3551 (2011)

  30. Sharma, V.; Dhiman, A.K.: Heat transfer from a rotating circular cylinder in the steady regime: effects of Prandtl number. Therm. Sci. 16,79–91 (2012)

  31. Churchil, S.W.; Bernstein, M.: A correlating equation for forced convection from gases and liquids to a circular cylinder in cross flow. J. Heat Transf. 99, 300–306 (1977)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Manzoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sufyan, M., Manzoor, S. & Sheikh, N.A. Heat Transfer Suppression in Flow Around a Rotating Circular Cylinder at High Prandtl Number. Arab J Sci Eng 39, 8051–8063 (2014). https://doi.org/10.1007/s13369-014-1337-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1337-7

Keywords

Navigation