Skip to main content
Log in

A Robust Model for the Network Violator Interception Problem

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper studies planning interceptor locations in a general transportation network to maximize the benefits of reducing public exposure to violators (e.g., violators in urban transportation networks and terrorists in airline networks). A robust optimization model is proposed to address uncertainties associated with link traffic volumes and the likelihood of having a violator on a particular network route. The potential failure of interceptors and subsequent uncertainties is also considered. The consequent mathematical model has a bi-level program structure and a non-convex inner problem. We propose a number of solution approaches, including the alternating ascent algorithm, convex relaxation, duality techniques and commercial solvers for the inner problem, and greedy randomized adaptive search program (GRASP) algorithms for the outer problem. Several numerical experiments are conducted to illustrate the computational efficiency and solution quality of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Century Council.: State of drunk driving fatalities in America. http://www.century-council.org/content/state-drunk-driving-fatalities-america-2009-report-released. Accessed 5 July 2011 (2009)

  2. National Highway Traffic Safety Administration (NHTSA).: Fatality analysis reporting system (FARS) web-based encyclopedia. Washington DC: US Department of Transportation Retrieved Apr. 28, 2006 from the World Wide Web: http://www-fars.nhtsa.dot.gov/ (2006)

  3. Firoozi Z., Tang S.H., Ariafar Sh., Ariffin M. K. A. M.: An optimization approach for a joint location inventory model considering quantity discount policy. Arab. J. Sci. Eng. 38, 983–991 (2013)

    Article  MathSciNet  Google Scholar 

  4. Hodgson M.J.: A flow-capturing location–allocation model. Geogr. Anal. 22(3), 270–279 (1990)

    Article  Google Scholar 

  5. Berman O., Larson R.C., Fouska N.: Optimal location of discretionary service facilities. Transp. Sci. 26(3), 261–277 (1992)

    Article  Google Scholar 

  6. Berman O., Bertsimas D., Larson R.C.: Locating discretionary service facilities, II: maximizing market size, minimizing inconvenience. Oper. Res. 43(4), 623–632 (1995)

    Article  MATH  Google Scholar 

  7. Gzara F., Erkut E.: A Lagrangian relaxation approach to large-scale flow interception problems. Eur. J. Oper. Res. 198, 405–411 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Boccia M., Sforza A., Strle C: Flow intercepting facility location: problems, models and heuristics. J. Math. Model. Algorithms 8, 35–79 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Zeng W., Hodgson M.J., Castillo I.: The pickup problem: consumers’ locational preferences in flow interception. Geogr. Anal. 41(1), 107–126 (2009)

    Article  Google Scholar 

  10. Hodgson M.J., Rosing K.E.: A network location–allocation model trading off flow capturing and p-median objectives. Ann. Oper. Res. 40(1–4), 247–260 (1992)

    Article  MATH  Google Scholar 

  11. Hodgson M.J., Rosing K.E., Storrier A.L.G.: Applying the flow-capturing location–allocation model to an authentic network: Edmonton, Canada. Eur. J. Oper. Res. 90(3), 427–443 (1996)

    Article  MATH  Google Scholar 

  12. Berman O.: Deterministic flow-demand location problems. J. Oper. Res. Soc. 48(1), 75–81 (1997)

    Article  MATH  Google Scholar 

  13. Zeng W., Castillo I., Hodgson M.J.: A generalized model for locating facilities on a Network with flow-based demand. Netw. Spat. Econ. 10(4), 579–611 (2008)

    Article  MathSciNet  Google Scholar 

  14. Berman O.: The maximizing market size discretionary facility location problem with congestion. Socio-Econ. Plan. Sci. 29(1), 39–46 (1995)

    Article  Google Scholar 

  15. Berman O., Krass D., Xu C.W.: Locating discretionary service facilities based on probabilistic customer flows. Transp. Sci. 29(3), 276–90 (1995)

  16. Berman O., Krass D., Xu C.W.: Locating flow-intercepting facilities: new approaches and results. Ann. Oper. Res. 60(1–4), 121–43 (1995)

  17. Berman O., Krass D., Xu C.W.: Generalized flow-interception facility location models with probabilistic customer flows. Stoch. Model 13(1), 1–25 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Berman O., Krass D.: Flow intercepting spatial interaction model: a new approach to optimal location of competitive facilities. Locat. Sci. 6(1–4), 41–65 (1998)

    Article  Google Scholar 

  19. Berman O., Krass D.: Locating multiple competitive facilities: spatial interaction model with variable expenditures. Ann. Oper. Res. 111(1–4), 197–225 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wu T.H., Lin J.N.: Solving the competitive discretionary service facility location problem. Eur. J. Oper. Res. 144(2), 366–378 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hodgson M.J., Berman O.: A billboard location model. Geogr. Environ. Model. 1, 25–45 (1997)

    Google Scholar 

  22. Hodgson M.J., Rosing K.E., Storrier A.L.G.: Applying the flow-capturing location–allocation model to an authentic network: Edmonton, Canada. Eur. J. Oper. Res. 90(3), 427–443 (1996)

    Article  MATH  Google Scholar 

  23. Horner M.W., Groves S.: Network flows-based strategies for identifying rail park-and-ride facility locations. Socio-Econ. Plan. Sci. 41(3), 255–268 (2007)

    Article  Google Scholar 

  24. Nourbakhsh S.M., Ouyang Y.: Optimal fueling strategies for locomotive fleets in railroad networks. Transp. Res. Part B 44(8/9), 1104–1114 (2010)

    Article  Google Scholar 

  25. Erdemir E.T., Batta R., Spielman S., Rogerson P.A., Blatt A., Flanigan M.: Location coverage models with demand originating from nodes and paths: application to cellular network design. Eur. Jo. Oper. Res. 190(3), 610–632 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. McMasters A.W., Mustin T.M.: Optimal interdiction of a supply network. Naval Res. Logist. 17, 261–268 (1970)

    Article  MATH  Google Scholar 

  27. Steinrauf, R.L.: A network interdiction model. M.S. Thesis, Naval Postgraduate School, Monterey, CA (1991)

  28. Phillips, C.A.: The network destruction problem. SAND-92-0186C, Sandia National Laboratories, Albuquerque, NM (1992)

  29. Wood R.K.: Deterministic network interdiction. Math. Comput. Model. 17(2), 1–18 (1993)

    Article  MATH  Google Scholar 

  30. Cormican, K.J.; Morton, D.P.; Wood, R.K.: Stochastic network interdiction. Oper. Res. 46(2), 184–197 (1998)

  31. Train K.E.: Discrete Choice Methods with Simulation. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  32. Carr R.D., Greenberg H.J., Hart W.E., Konjevod G., Lauer E., Lin H., Morrison T., Phillips C.A.: Robust optimization of contaminant sensor placement for community water systems. Math. Program. 107(1), 337–356 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zeynep H.G., Christodoulos A.F.: Global optimization of nonlinear bilevel programming problems. J. Glob. Optim. 20(1), 1–31 (2001)

    Article  MATH  Google Scholar 

  34. AI-Khayyal F.A., Falk J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8(2), 273–286 (1983)

    Article  MathSciNet  Google Scholar 

  35. Androulakis I.P., Maranas C.D., Floudas C.A.: aBB: a global optimization method for general constrained non-convex problems. J. Glob. Optim. 7(4), 337–363 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  36. Feo T.A., Resende M.G.C.: Greedy randomized adaptive search procedures. J. Glob. Optim. 6, 109–133 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  37. Bar-Gera, H.: Transportation network test problems. http://www.bgu.ac.il/~bargera/tntp/. Accessed 17 June 2011 (2001)

  38. Sheffi Y.: Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods. Prentice Hall, England Cliffs, NJ (1985)

    Google Scholar 

  39. Yen J.Y.: Finding the k shortest loopless paths in a network. Manag. Sci. 17(11), 712–716 (1971)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxun Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., An, S. & Zhao, M. A Robust Model for the Network Violator Interception Problem. Arab J Sci Eng 39, 6871–6881 (2014). https://doi.org/10.1007/s13369-014-1271-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1271-8

Keywords

Navigation