Skip to main content
Log in

Three-Dimensional Electro-Fenton Degradation of Methyleneblue Based on the Composite Particle Electrodes of Carbon Nanotubes and Nano-Fe3O4

  • Research Article - Special Issue - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Carbon nanotubes/magnetic nano-Fe3O4 composite (CNTs/Fe3O4NPs) were prepared by chemical co-precipitation. Ti/SnO2electrode was used as the anode, the CNTs/Fe3O4 composite as particle electrodes, and graphite electrode as cathode respectively. Four different systems for degradation of methylene blue (MB) in neutral medium were investigated: Ti/SnO2 anode (A), Ti/SnO2 anode with CNTs particle electrodes (B), Ti/SnO2anode with Fe3O4NPs particle electrodes (C), and Ti/SnO2anode with CNTs/Fe3O4NPs particle electrodes (D). It was found that D system exhibited much higher MB degradation efficiency than others, attaining 82 % in 30 min. The enhanced efficiency was attributed to Ti/SnO2 anodic direct oxidation of MB and CNTs/Fe3O4 NPs composite particle electrodes which could activate molecule oxygen to produce more H2O2 and ·OH. CNTs/Fe3O4 NPs particle electrodes could achieve magnetic separation easily for reuse and exhibited good degradation efficiency to MB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ai, Z.; Xiao, H.; Mei, T.: Electro-fenton degradation of rhodamine B based on a composite cathode of Cu2O nanocubes and carbon Nanotubes. J. Phys. Chem. C. 112, 11929–11935 (2008)

    Article  Google Scholar 

  2. Mo, D.-Q.; Guo, Y.-D.:Treatment of rhodamine B wastewater by three-dimensional electrode reactor with hydrogen peroxide. Environ. Sci. Technol. 34(6), 167–172 (2011)

    Google Scholar 

  3. Ma, C.; Tan, F.; Zhao, H.; Chen, S.; Quan, X.: Sensitive amperometric determination of chemical oxygen demand using Ti/Sb–SnO2/PbO2 composite electrode. Sens. Actuators B. 155, 114–119 (2011)

    Article  Google Scholar 

  4. Ghaedi, M.; Ghobadzadeh, P.; Kokhdan, S.N.; Soylak, M.: Oxidized multiwalled carbon nanotubes as adsorbents for kinetic and equilibrium study of removal of 5-(4-dimethyl amino benzylidene) rhodanine. Arab. J. Sci. Eng. 38, 1691–1699 (2013)

  5. Gao, G.; Vecitis, C.D.: Electrochemical carbon nanotube filter oxidative performance as function of surface chemistry. Environ. Sci. Technol. 45, 9726–9734 (2011)

    Article  Google Scholar 

  6. Wu, Y.; Chen, L.; Xie, K.; Li, J.; Chen, Y.: Synthesis and characterization of multi-wall carbon nanotubes supported-hydrated iron phosphate cathode material for lithium-ion cells by a novel homogeneous precipitation method. Ionics 18, 721–729 (2012)

  7. Briyyo, P.J.; Santhanam, K.S.V.; Rabio, A.; Alonso, J.A.; Ajayan, P.M.: Improved charge transfer at carbon nanotube electrodes. Adv. Mater. 11, 2–4(1999)

    Google Scholar 

  8. Sljukic, B.; Banks, C.E.; Compton, R.G.: Iron oxide particles are the active sites for hydrogen peroxide sensing at multiwalled carbon nanotube modified electrodes. Nano Lett. 6, 1556–1558 (2006)

  9. Wang, F.; Yany, X.; Xua, M.; Li, S.; Fang, W.: Electrochemical performance and electroreduction of maleic acid on Ce-doped nano-TiO2 film electrode. Electrochim. Acta. 97, 253–258 (2013)

  10. Qu, S.; Wang, J.; Kong, J.; Yang, P.; Chen, G.: Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing. Talanta 71, 1096–1102 (2007)

  11. Zhenhai, L.; Rongpeng, W.; Caimei, F.: Preparation and characterization of cerium doped Ti/SnO2-Mn2O3/PbO2 electrode. J. Rare Earth. 25(1), 91–96 (2007)

  12. Meng, J.; Yang, G.; Yan, L.; Wang, X.: Synthesis and characterization of magnetic nanometer pigment Fe3O4. Dyes Pigm. 66(2), 109–113 (2005)

  13. Li, X.; Shen, L.; Zhang, D.; Qi, H.; Gao, Q.; Ma, F.; Zhang, C.: Electrochemical impedance spectroscopy for study ofaptamer-thrombin interfacial interactions. Biosens. Bioelectron. 23, 1624–1630 (2008)

  14. Lisdat, F.; Schäfer, D.: The use of electrochemical impedance spectroscopy for biosensing. Anal. Bioanal. Chem. 391, 1555–1567 (2008)

    Article  Google Scholar 

  15. Andriiko, A.A.; Globa, N.I.; Zul’figarov, A.O.; Prisiazhnyi, V.D.; Sementsov, Ju.I.; Potaskalov, V.A.: Discharge-ionization of hydrogen on modified carbonnanotube electrodes. Int. J. Hydrogen Energy 38, 5983–5988 (2013)

    Article  Google Scholar 

  16. Li, J.; Ai, Z.; Zhang, L.: Design of a neutral electro-Fenton system with Fe@Fe2O3/ACF composite cathode for wastewater treatment. J. Hazard. Mater. 164, 18–25 (2009)

    Google Scholar 

  17. Isarain-Chávez, E.; Cabot, P.L.; Centellas, F.; Rodríguez, R.M.; Arias, C.; Garrido, J.A.; Brillas, E.: Electro-Fenton and photoelectro-Fenton degradations of the drug beta-blocker propranolol using a Pt anode: Identification and evolution of oxidation products. J. Hazard. Mater. 185, 1228–1235 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, L., Yan, P., Guo, X. et al. Three-Dimensional Electro-Fenton Degradation of Methyleneblue Based on the Composite Particle Electrodes of Carbon Nanotubes and Nano-Fe3O4 . Arab J Sci Eng 39, 6659–6664 (2014). https://doi.org/10.1007/s13369-014-1184-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1184-6

Keywords

Navigation