Skip to main content
Log in

Investigation of Heat Transfer in a Porous Annulus with Pulsating Pressure Gradient by Homotopy Analysis Method

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present research derives analytical expressions for the heat transfer in a porous annulus with pulsating pressure gradient imposed across the annulus. The governing partial and coupled equations are transformed to ordinary ones by utilizing the similarity variables and then solved analytically using Homotopy Analysis Method (HAM). The analytic solution is expressed in the form of series, and its convergence is analyzed. The resulting temperature distribution, Nusselt number and entropy generation profiles are shown graphically for the different values of the parameters of the problem. A numerical solution has also been obtained to verify the solution by HAM. Good agreement is observed between the two methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a and b :

a < b Radii

C(η):

Amplitude of the fluctuating component of temperature

f(η):

Radial velocity

k :

Thermal conductivity

M(η):

Steady component of temperature

N(η):

Fluctuating component of temperature

Nu:

Nusselt number

P:

Pressure

Pr:

Prandtl number

Re:

Reynolds number

Res :

Residual

T :

Temperature

t :

Time

u :

Velocity component in the positive direction of r

V 1 :

Constant suction velocity at r = a

V 2 :

Constant suction velocity at r = b

w :

Velocity component in the positive direction of z

α :

Dimensionless parameter characterizing frequency

ϕ :

Phase

φ(r,t):

Arbitrary function of r and t

ν :

Kinematic viscosity

ρ :

Density

σ :

Entropy generation

ω :

Frequency of pulsation of pressure gradient

ζ :

Square of radius ratio

Ω :

Ratio of the rates at which the mass transfer takes place at the two boundaries

*:

Dimensionless

i :

Inner cylinder

o :

Outer cylinder

References

  1. Nield, D.A.; Bejan, A.: Convection in Porous Media, 3rd ed., Springer, New York (2006)

    Google Scholar 

  2. Pop, I.; Ingham, D.B.: Convective Heat Transfer: Mathematical and Computational Modeling of Viscous Fluids and Porous Media, Pergamon, Oxford (2001)

  3. Ingham, D.B.; Pop, I.: Transport Phenomena in Porous Media III, Elsevier, Oxford (2005)

  4. Vafai, K.: Handbook of Porous Media, 2nd ed., Taylor & Francis, New York (2005)

  5. Vafai, K.: Porous Media: Applications in Biological Systems and Biotechnology, CRC Press, Boca Raton (2010)

  6. Vadasz, P.: Emerging Topics in Heat and Mass Transfer in Porous Media, Springer, New York (2008)

  7. Kanwal, S.; Verma, P.D.: Unsteady flow of a viscous fluid through an annulus. Def. Sci. J. 32, 225–229 (1982)

    MATH  Google Scholar 

  8. Singh, M.; Rajvanshi, S.C.: Pulsatile flow in a porous annulus for small Reynolds number. J. Math. Phys. Sci. 20, 391–411 (1986)

    MATH  Google Scholar 

  9. Singh, M.; Rajvanshi, S.C.: Pulsatile flow in a porous annulus for large suction. Proc. Indian Natl. Sci. Acad. 53, 622–631 (1987)

    MATH  Google Scholar 

  10. Majdalani, J.; Flandro, G.A.: The oscillatory pipe flow with arbitrary wall injection. Proc. Roy. Soc. Lond. 458, 1621–1651 (2002)

    Article  MATH  Google Scholar 

  11. Chellam, S.; Liu, M.: Effect of slip on existence, uniqueness and behavior of similarity solutions for steady incompressible laminar flow in porous tubes and channels. Phys. Fluids, 18, 083601–083610 (2006)

    Article  MathSciNet  Google Scholar 

  12. Hamza, E.A.; Rajvanshi, S.C.; Sacheti, N.C.: Pulsatile flow between two coaxial porous cylinders with slip on inner cylinder Matemáticas Enseòanza Universitaria, 15, 51–66 (2007)

  13. Jain, S.R.; Rajvanshi, S.C.; Sacheti, N.C.: Pulsatile flow through annular space bounded by an inner cylinder of permeable material with large suction at the outer cylinder. Bull. Pure Appl. Math. 2, 152–177 (2008)

    MATH  MathSciNet  Google Scholar 

  14. Kumar, R.; Study of natural convection in horizontal annuli. J. Heat Mass Trans. 31, 1137–1148 (1988)

    Article  Google Scholar 

  15. Datta, N.; Dalal, D.C.: Pulsatile flow and heat transfer of a dusty fluid through an infinitely long annular pipe. Intern. J. Multiphase Flow 21, 512–528 (1995)

    Article  Google Scholar 

  16. Yoo, J.-S.: Mixed convection of air between two horizontal concentric cylinders with a cold rotating outer cylinder. Intern. J. Heat Mass Trans. 41, 293–302 (1998)

    Article  MATH  Google Scholar 

  17. Aboubi, K.; Robillard, L.; Vasseur, P.: Natural convection in horizontal annulus filled with an anisotropic porous medium. Intern. J. Numer. Meth. Heat & Fluid Flow, 8(6), 689–702 (1998)

    Article  MATH  Google Scholar 

  18. Guo, Z.; Sung, H.J.; Hyun, J.M.: Pulsating flow and heat transfer in an annulus partially filled with porous media. Numer. Heat Trans. Part A, 31, 517–527 (1997)

    Article  Google Scholar 

  19. Du, J.; Wang, B.: Mixed convection in porous media between vertical concentric cylinders. Heat Trans. 8(2), 95–101 (1999)

    Google Scholar 

  20. Teamah, M.A.; Sorour, M.M.; Saleh, R.A.: Mixed convection between two horizontal concentric cylinders when cooled outer cylinder is rotating. Alexandria Eng. J. 44, 347–360 (2005)

    Google Scholar 

  21. Dutta, R.; Atta, A.; Dutta, T.K.: Experimental and numerical study of heat transfer in horizontal concentric annulus containing phase change material. Canad. J. Chem. Eng. 86, 700–710 (2008)

    Article  Google Scholar 

  22. Sarbu, I.; Iosif, A.: Numerical analysis of the laminar forced heat convection between two coaxial cylinders. Intern. J. Energy, 3(4), 51–58 (2009)

    Google Scholar 

  23. Sebti, S.S.; Khalilarya, S.H.; Mirzaee, I.; Hosseinizadeh, S.F.; Kashani, S.; Abdollahzadeh, M.: A numerical investigation of solidification in horizontal concentric annuli filled with nano-enhanced phase change material (NEPCM). World Appl. Sci. J. 13(1), 9–15 (2011)

  24. Rashidi, M.M.; Dinarvand, S.: Purely analytic approximate solutions for steady three-dimensional problem of condensation film on inclined rotating disk by homotopy analysis method. Nonlin. Anal. 10, 2346–2356 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rashidi, M.M.; Keimanesh, M.; Rajvanshi, S.C.: Study of pulsatile flow in a porous annulus with the homotopy analysis method. Intern. J. Numer. Meth. Heat Fluid Flow 22(8), 971–989 (2012). doi:10.1108/09615531211271817

  26. Rashidi, M.M.; Keimanesh, M.; Rajvanshi, S.C.; Wasu, S.: Pulsatile flow through annular space bounded by outer porous cylinder and an inner cylinder of permeable material. Intern. J. Comput. Meth. Eng. Sci. Mech. 13(6), 381–391 (2012). doi:10.1080/15502287.2012.698708

  27. Yuan, S.W.; Finkelstein, A.B.: Laminar pipe flow with injection and suction through a porous wall. ASME Trans. J. Appl. Mech. 78, 719–724 (1956)

    Google Scholar 

  28. Berman, A.S.: Laminar flow in an annulus with porous walls. J. Appl. Phys. 29, 71–75 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  29. Skalak, F.M.; Wang, C.Y.: Pulsatile flow in a tube with wall injection and suction. J. Appl. Sci. Res. 33, 269–307 (1977)

    Article  MATH  Google Scholar 

  30. Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy analysis Method, Chapman and Hall/CRC Press, Boca Raton (2003)

  31. Liao, S.J.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlin. Sci. Numer. Simul. 15, 2003–2016 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Pop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashidi, M.M., Rajvanshi, S.C., Kavyani, N. et al. Investigation of Heat Transfer in a Porous Annulus with Pulsating Pressure Gradient by Homotopy Analysis Method. Arab J Sci Eng 39, 5113–5128 (2014). https://doi.org/10.1007/s13369-014-1140-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1140-5

Keywords

Navigation