Skip to main content
Log in

A Three-Dimensional Multi-Body Inversion Process of Gravity Fields of the Gheshm Sedimentary Basin

  • Research Article - Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Understanding the response of a particular exploration target necessitates modelling the response from other sources that are of less interest. Three-dimensional (3D) modelling can provide accurate results of targets of interest with less calculation error due to the simultaneous computations of the responses from anomalous sources. This paper presents a 3D multi-body model to match the observed gravity data in the seashore and shallow waters from east of the Gheshm Island to the Hormoz Island and its northern seashores. A commercial software called ModelVision Pro was used to perform modelling process to determine the geometry and physical properties of geological structures and oil traps. The 3D modelling results were compared with the geological and depth information from wells. The results of anomaly separation identified few gravity lows due to the salt plug intrusion. The depth of the anomalous sources and other geological structures were determined. An approximate depth of 1,800 m was predicted for depth to the top of the source N next to the Gheshm salt plug. This correlates fine with the depth obtained from well Gh 2 (1,660 m); showing a relative error of 8.4 %. The results obtained from this research can provide useful information about the likely oil traps in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lowrie W.: Fundamentals of Geophysics. Cambridge University press, Cambridge (1997)

    Google Scholar 

  2. Simpson S.M.: Least squares polynomial fitting to gravitational data and density plotting by digital computers. Geophysics 9, 255–270 (1954)

    Article  Google Scholar 

  3. Sarma D.D., Selvaraj J.B.: Two-dimensional orthonormal trend surfaces for prospecting. Comput. Geosci. 16, 897–909 (1990)

    Article  Google Scholar 

  4. Beltrao J.F., Silva J.B.C., Costa J.C.: Robust polynomial fitting method for regional gravity estimation. Geophysics 56, 80–89 (1991)

    Article  Google Scholar 

  5. Mallick, K.; Sharma, K.K.: Computation of regional gravity anomaly—a novel approach. In: Proceedings of the Indian Academy of Science, Earth Planetary Science, vol. 106, pp. 55–59 (1997)

  6. Ardejani, F.D.; Moradzadeh, A.; Yaghobipour, M.; Tabatabaie, S.H.: A study on the capability of finite element method in gravity anomalies separation of oil traps. J. Earth Space Phys. 37(2), 111–125 (2011)

    Google Scholar 

  7. Hinze, W.J.: The role of gravity and magnetic methods in engineering and environmental studies. In: Ward (ed.) Geotechnical and Environmental Geophysics. The Society of Exploration Geophysics, pp. 75–126 (1990)

  8. Hubbert M.K.: A line-integral method of computing the gravimetric effects of two-dimensional masses. Geophysics 13, 215–225 (1948)

    Article  Google Scholar 

  9. Talwani, M.; Worzel, J.I.; Landisman, M.: Rapid gravity computation for tow-dimensional bodies with application to the Mendicino submarine fracture zone. Geophys. Res. 64, 49–59 (1959)

    Google Scholar 

  10. Talwani M., Ewing M.: Rapid computation of gravitational attraction of three-dimensional bodies of arbitrary shape. Geophysics 25, 203–225 (1960)

    Article  Google Scholar 

  11. Paterson N.R., Reeves C.V.: Applications of gravity and magnetic surveys: the state-of-the-art in 1985. Geophysics 50, 2558–2594 (1985)

    Article  Google Scholar 

  12. Pilkington M.: 3-D magnetic imaging using conjugate gradients. Geophysics 62, 1132–1142 (1997)

    Article  Google Scholar 

  13. Li Y., Oldenburg D.W.: 3-D inversion of gravity data. Geophysics 63, 109–119 (1998)

    Article  Google Scholar 

  14. Abdelrahman, E.M.; El-Araby, T.M.: A least-squares minimization approach to depth determination from moving average residual gravity anomalies. Geophysics 59, 1779–1784 (1993)

    Google Scholar 

  15. Abdelrahman, E.M.; El-Araby, T.M.; El-Araby, H.M.; Abo-Ezz, E.R.: A new method for shape and depth determinations from gravity data. Geophysics 66, 1774–1780 (2001)

    Google Scholar 

  16. Jenkins A.J.O., Messfin D., Moon W.: Gravity modelling of salt domes and pinnacle reefs. J. Can. Soc. Explor. Geophys. 19(1), 51–56 (1983)

    Google Scholar 

  17. Aghajani, H.; Moradzadeh, A.; Hualin, Z.: Estimation of depth to salt domes from normalized full gradient of gravity anomaly and examples from the USA and Denmark. J. Earth Sci. 20(6), 1012–1016 (2009)

    Google Scholar 

  18. Talwani M.: Non linear inversion of gravity gradients and the GGI gradiometer. Central Eur. J. Geosci. 3(4), 424–434 (2011)

    Article  Google Scholar 

  19. Oruc, B.: Edge detection and depth estimation using a Tilt Angle Map from gravity gradient data of the Kozakl-Central Anatolia region, Turkey. Pure Appl. Geophys. 168, 1769–1780 (2011)

    Google Scholar 

  20. Barnes G., Barraud J.: Imaging geologic surfaces by inverting gravity gradient data with depth horizons. Geophysics 77(1), 1–11 (2012)

    Article  Google Scholar 

  21. Encom Technology Pty Ltd ModelVision Pro Microsoft. The 3D workbench for magnetic and gravity interpretation, version 5 (2003)

  22. Konyuhov A.I., Maleki B.: The Persian Gulf basin: geological history, sedimentary formations and petroleum potential. Lithol. Miner. Res. 41(4), 344–361 (2006)

    Article  Google Scholar 

  23. National Iranian Oil Company. Technical report on the Gheshm gravity data, Non-Seismic group, Geophysical Department (2002)

  24. Abdelrahman, E.M.; Riad, S.; Refai, E.; Amin, Y.: On the least-squares residual anomaly determination. Geophysics 50(3), 473–480 (1985)

    Google Scholar 

  25. Pan, G.; Harris, D.P.: Information Synthesis for Mineral Exploration. Oxford University Press, New York (2000)

  26. Telford W.M., Geldart L.P., Sheriff R.E.: Applied Geophysics, 2nd edn. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  27. Inman J.R.: Resistivity inversion with ridge regression. Geophysics 40, 798–817 (1975)

    Article  Google Scholar 

  28. Loke, M.H.; Barker, R.D.: Rapid least-square inversion of apparent resistivity pseudo-sections by a quasi-Newton method. Geophys. Prospect. 44, 131–152 (1996)

    Google Scholar 

  29. Moradzadeh, A.; Doulati Ardejani, F.; Agah, A.; Tabatabaie Raeesi, S.H.: A new approach to three- dimensional inverse modeling of gravity data for exploration of hydrocarbon traps in Tabas area. Earth Space Phys. 31(2), 23–34 (2005)

    Google Scholar 

  30. Levenberg K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944)

    MATH  MathSciNet  Google Scholar 

  31. Marquardt D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ali Akbar Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S.A.A., Doulati Ardejani, F., Tabatabaie, S.H. et al. A Three-Dimensional Multi-Body Inversion Process of Gravity Fields of the Gheshm Sedimentary Basin. Arab J Sci Eng 39, 5603–5614 (2014). https://doi.org/10.1007/s13369-014-1124-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1124-5

Keywords

Navigation